Coherent-Mode Representation of Optical Fields and Sources
Author Affiliations +
Abstract
In the 1980s, E. Wolf proposed a new theory of partial coherence formulated in the space-frequency domain. The fundamental result of this theory is the fact that a stationary optical field of any state of coherence may be represented as a superposition of coherent modes, i.e., elementary uncorrelated field oscillations that are spatially completely coherent. The importance of this result can hardly be exaggerated since it opens a new perspective in understanding and interpreting the physics of generation, propagation, and transformation of optical radiation. In this chapter, using primarily the basic book by Mandel and Wolf, we give an outline of the theory of optical coherence in the space-frequency domain and coherent-mode representations of an optical field. We also consider the concept of the effective number of modes needed for the coherent-mode representation of an optical field, and give a brief survey of the known coherent-mode representations of some model sources, namely, the Gaussian Schell-model source, Bessel correlated source, and the Lambertian source.
Online access to SPIE eBooks is limited to subscribing institutions.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Coherence (optics)

Physics

Superposition

Back to Top