Polarimetric Interactions: Reflection and Transmission
John R Schott
DOI: 10.1117/3.817304.ch5
text A A A


This chapter introduces the formalism we need to describe the interaction of a polarized beam with a reflective or transmissive medium. To simplify the discussion, we begin in this chapter with simple optically flat surfaces and move, in Chapter 6, to consideration of the more complex surfaces that represent the surfaces we wish to remotely sense. This chapter draws on classic texts on optics and polarization [e.g., Hecht (1990) and Goldstein (2003)], to which the reader is referred for a more thorough treatment.

5.1 Fresnel Specular Reflection

In Chapter 2 we introduced the concept of total reflection as the ratio of the exittance from a surface to the irradiance onto a surface and a similar term for the transmission. Fresnel (1866) showed that for radiation normally incident onto a planar dielectric surface (i.e., an optically flat surface), the reflectivity is a function only of the index of refraction of the two media and can be expressed as r=(n2−n1n2+n1)2, where n1 is the index of refraction in the medium in which the wave is propagating (often air) and n2 is the index of refraction of the second medium (i.e., the reflecting surface). If the medium is opaque, then the remainder of the energy is absorbed (i.e., 1-r). If the medium is transmissive, the transmission through the interface is simply τ=1−r. For the more general case of radiation incident from an arbitrary angle, we must take into account the polarized nature of radiation.

© 2009 Society of Photo-Optical Instrumentation Engineers

Access This Chapter
Please Wait... Processing your request... Please Wait.
Sign In

Related Content

Customize your page view by dragging & repositioning the boxes below.

Related Journal Articles

Related Book Chapters

Topic Collections


Access to SPIE eBooks is limited to subscribing institutions and is not available as part of a personal subscription. Print or electronic versions of individual SPIE books may be purchased via SPIE.org.

Your library does not currently subscribe to eBooks on the SPIE Digital Library. Print or electronic versions of individual SPIE books may be purchased via SPIE.org.

Sign In