

## Multimodality Breast Imaging Diagnosis and Treatment







# Multimodality Breast Imaging Diagnosis and Treatment

E. Y. K. Ng
U. Rajendra Acharya
Rangaraj M. Rangayyan
Jasjit S. Suri
Editors



Bellingham, Washington USA



Library of Congress Cataloging-in-Publication Data

Multimodality breast imaging: diagnosis and treatment / editors, E.Y.K. Ng, U. Rajendra Acharya, Rangaraj M. Rangayyan, and Jasjit S. Suri.

pages cm

Includes bibliographical references.

ISBN 978-0-8194-9294-4

1. Breast–Imaging. I. Ng, Y. K. Eddie, editor of collaboration. II. Acharya U, Rajendra, editor of collaboration. III. Rangayyan, Rangaraj M., editor of collaboration. IV. Suri, Jasjit S., editor of collaboration.

RG493.5.D52M85 2013 618.1'90754–dc23

2012042251

Published by SPIE P.O. Box 10

Bellingham, Washington 98227-0010 USA

Phone: +1 360.676.3290 Fax: +1 360.647.1445 Email: Books@spie.org Web: http://spie.org

Copyright © 2013 Society of Photo-Optical Instrumentation Engineers (SPIE)

All rights reserved. No part of this publication may be reproduced or distributed in any form or by any means without written permission of the publisher.

The content of this book reflects the work and thought of the author(s). Every effort has been made to publish reliable and accurate information herein, but the publisher is not responsible for the validity of the information or for any outcomes resulting from reliance thereon.

Cover background image courtesy of SuperSonic Imagine.

Printed in the United States of America. First printing









## **Contents**

| is  |       | ntributoi | rs<br>breviation | ne                                                             | XX<br>XX\ |
|-----|-------|-----------|------------------|----------------------------------------------------------------|-----------|
| 101 | -     |           |                  |                                                                | ^^\       |
|     | Using | Statist   | ical Meas        | ural Distortion in Prior Mammograms<br>sures of Angular Spread | 1         |
|     | Ranga | araj M. F | Rangayya         | n, Shantanu Banik, and J. E. Leo Desautels                     |           |
|     | 1.1   | Introdu   | uction           |                                                                | 2         |
|     | 1.2   |           |                  | etup and Database                                              | 3         |
|     | 1.3   | Metho     | ds               |                                                                | 5         |
|     |       | 1.3.1     |                  | on of potential sites of architectural distortion              | 6         |
|     |       | 1.3.2     | Analysis         | s of angular spread                                            | 10        |
|     |       |           | 1.3.2.1          | Angular spread of power in the frequency                       |           |
|     |       |           |                  | domain                                                         | 10        |
|     |       |           | 1.3.2.2          | Coherence                                                      | 13        |
|     |       |           | 1.3.2.3          | Orientation strength                                           | 14        |
|     |       | 1.3.3     | Charact          | erization of angular spread                                    | 15        |
|     |       | 1.3.4     | Measure          | es of angular spread                                           | 16        |
|     |       |           | 1.3.4.1          | Shannon's entropy                                              | 17        |
|     |       |           | 1.3.4.2          | Tsallis entropy                                                | 18        |
|     |       |           | 1.3.4.3          | Rényi entropy                                                  | 20        |
|     |       | 1.3.5     | Feature          | selection and pattern classification                           | 21        |
|     | 1.4   | Result    | S                |                                                                | 23        |
|     |       | 1.4.1     | Analysis         | s with various sets of features                                | 23        |
|     |       | 1.4.2     | Statistic        | al significance of differences in                              |           |
|     |       |           | ROC an           | alysis                                                         | 24        |
|     |       | 1.4.3     | Reduction        | on of FPs                                                      | 25        |
|     |       | 1.4.4     | Statistic        | al significance of the differences                             |           |
|     |       |           | in FROC          | Canalysis                                                      | 26        |
|     |       | 1.4.5     | Effects of       | of the initial number of ROIs selected                         | 27        |
|     | 1.5   | Discus    | ssion            |                                                                | 27        |
|     |       | 1.5.1     | Compar           | ative analysis with related previous works                     | 28        |
|     |       | 1.5.2     | Compar           | ative analysis with other works                                | 29        |
|     |       | 153       | Limitatio        | nns                                                            | 30        |







Contents νi 1.6 Conclusion 31 Acknowledgments 31 References 31 **Texture-based Automated Detection of Breast Cancer Using Digitized Mammograms: A Comparative Study** 41 U. Rajendra Acharya, E. Y. K. Ng, Jen-Hong Tan, S. Vinitha Sree, and Jasjit S. Suri 2.1 Introduction 42 2.2 Data Acquisition and Preprocessing 44 2.3 Feature Extraction 45 Gray-level co-occurrence matrix 45 2.3.1 2.3.2 Run length matrix 48 2.4 Classifiers 48 2.4.1 48 Support vector machine 2.4.2 49 Gaussian mixture model 2.4.3 Fuzzy Sugeno classifier 49 2.4.4 k-nearest neighbor 49 2.4.5 Probabilistic neural network 50 2.4.6 Decision tree 50 2.5 Results 50 2.5.1 Performance measures 50 2.5.2 Receiver operating characteristics 51 2.5.3 Classification results 51 2.5.4 Graphical user interface 54 2.6 Discussion 54 2.7 Conclusion 57 58 Acknowledgments References 58 **Case-based Clinical Decision Support for Breast Magnetic Resonance Imaging** 65 Ye Xu and Hiroyuki Abe 3.1 Introduction 65 3.2 Methodologies 68 3.2.1 Data preparation 68 3.2.2 Block diagram of our case-based approach 69 3.2.3 Features to calculate on breast MRI images 72 Collections for ground truth of similarity from data 3.2.4 75 3.2.5 Evaluation 75 3.3 Results and Discussion 76 3.4 Conclusions 80 References 80





| Сс | ontents           |           |             |                                                         | vii |  |
|----|-------------------|-----------|-------------|---------------------------------------------------------|-----|--|
| 4  |                   |           |             | Detection, and Discrimination ontrast-Enhanced Magnetic |     |  |
|    | Resonance Imaging |           |             |                                                         |     |  |
|    | Valen             | tina Gia  | nnini, Ann  | a Vignati, Massimo De Luca,                             |     |  |
|    | Silvar            | no Aglioz | zzo, Alberi | to Bert, Lia Morra, Diego Persano,                      |     |  |
|    | Filipp            | o Molina  | ri, and Da  | aniele Regge                                            |     |  |
|    | 4.1               | Introdu   | uction      |                                                         | 86  |  |
|    | 4.2               | Regist    | ration      |                                                         | 87  |  |
|    |                   | 4.2.1     | Method      |                                                         | 87  |  |
|    |                   | 4.2.2     | Results     |                                                         | 88  |  |
|    | 4.3               | Lesion    | Detection   | n                                                       | 88  |  |
|    |                   | 4.3.1     | Method      |                                                         | 90  |  |
|    |                   |           | 4.3.1.1     | Breast segmentation                                     | 90  |  |
|    |                   |           | 4.3.1.2     | Lesion detection                                        | 91  |  |
|    |                   |           | 4.3.1.3     | False-positive reduction                                | 94  |  |
|    |                   | 4.3.2     | Results     |                                                         | 95  |  |
|    |                   |           | 4.3.2.1     | Subjects and MRI protocols                              | 95  |  |
|    |                   |           | 4.3.2.2     | Statistical analysis                                    | 96  |  |
|    |                   |           | 4.3.2.3     | Results                                                 | 97  |  |
|    | 4.4               | Lesion    | Discrimir   | nation                                                  | 97  |  |
|    |                   | 4.4.1     | Method      |                                                         | 100 |  |
|    |                   | 4.4.2     | Results     |                                                         | 102 |  |
|    | 4.5               | Discus    | ssion and   | Conclusions                                             | 103 |  |
|    | Refe              | erences   |             |                                                         | 105 |  |
| 5  | Adva              | nced M    | odality In  | naging of the Systemic                                  |     |  |
| •  |                   |           | east Can    |                                                         | 113 |  |
|    | •                 | Heng Ta   |             |                                                         |     |  |
|    | 5.1               | Stagin    | g Evaluat   | ion of Breast Cancer                                    | 113 |  |
|    | 5.2               | -         | Disease     |                                                         | 115 |  |
|    |                   | 5.2.1     | Axillary    | nodes                                                   | 116 |  |
|    |                   | 5.2.2     | -           | aining nodes                                            | 119 |  |
|    | 5.3               | Distan    | t Metasta   | •                                                       | 120 |  |
|    |                   | 5.3.1     | Pulmona     | ary metastases                                          | 121 |  |
|    |                   | 5.3.2     |             | etastases                                               | 122 |  |
|    |                   | 5.3.3     | Liver me    | etastases                                               | 124 |  |
|    |                   | 5.3.4     |             | etastases                                               | 127 |  |
|    | 5.4               | Treatn    | nent Resp   | onse Evaluation: Response                               |     |  |
|    |                   |           | -           | ria in Solid Tumors (RECIST)                            | 128 |  |
|    | 5.5               |           |             | Do or Not To Do?                                        | 130 |  |
|    | 5.6               |           | egional Re  |                                                         | 132 |  |
|    | 5.7               | Summ      | -           |                                                         | 132 |  |
|    | Refe              | erences   | -           |                                                         | 133 |  |





6.6

7.2

7.3

7.4

8.1

8.2

8.3

8.4

8.5

References

Jie-Zhi Cheng

References

Conclusion

Introduction

Conclusion

Introduction

8.2.1

8.2.2

8.3.2

8.3.3

8.3.4

8.3.5

8.4.1

8.4.2

8.4.3

8.4.4

8.4.5

8.4.6

3D Whole-Breast Ultrasonography

Ruey-Feng Chang and Yi-Wei Shen

8 Diagnosis of Breast Cancer Using Ultrasound

Instrument Requirements

**Examination Technique** 

8.3.1 Patient positioning

Elastography

Image labeling

Diagnosing cysts

Scanning technique

Chui-Mei Tiu, Yi-Hong Chou, Chung-Ming Chen, and

Equipment and transducer

Grayscale Ultrasonic Criteria of Breast Disease

General criteria of interpretation

Secondary signs of malignancy

Evaluation of breast calcifications

Considerations in Interpreting US Examination Results

Differentiating solid lesions

Diagnosing carcinoma

3D Whole-Breast Ultrasonography Machines

Related Studies of 3D Whole-Breast Ultrasonography

Image quality and equipment quality control

Doppler imaging and contrast-enhanced US

|       |         | <b>⊕</b>                                          |         |
|-------|---------|---------------------------------------------------|---------|
|       |         | C                                                 | ontents |
| Nucle | ar Imac | ing with PET CT and PET Mammography               | 143     |
|       | _       | ock Tan and Wanying Xie                           |         |
| 6.1   | Introdu | uction                                            | 143     |
| 6.2   | Breast  | : Cancer Molecular Pathology and PET              | 144     |
| 6.3   | Diagno  | osis of Primary Breast Cancers                    | 147     |
| 6.4   | Stagin  | g of Breast Cancers                               | 150     |
|       | 6.4.1   | Axillary nodal evaluation                         | 150     |
|       | 6.4.2   | Mediastinal and internal mammary nodal evaluation | 151     |
|       | 6.4.3   | Distant metastasis and overall staging impact     |         |
|       |         | of FDG PET                                        | 152     |
| 6.5   | Respo   | nse Assessment                                    | 154     |





156 156

165

165

166

170

172 172

175

176

177

177

178

178

178

179

179

180

181

181

181

181

181

182

183

183

184

Contents ix

| 8.6 | Ultrasonography of Malignant Tumors |           |                                   |     |  |  |
|-----|-------------------------------------|-----------|-----------------------------------|-----|--|--|
|     | 8.6.1                               | Invasive  | ductal carcinoma                  | 185 |  |  |
|     |                                     | 8.6.1.1   | Sonographic findings              | 186 |  |  |
|     | 8.6.2                               | Mucinou   | s carcinoma                       | 198 |  |  |
|     | 8.6.3                               | Medullar  | ry carcinoma                      | 200 |  |  |
|     | 8.6.4                               | Invasive  | lobular carcinoma                 | 203 |  |  |
|     |                                     | 8.6.4.1   | Ultrasound features               | 203 |  |  |
|     | 8.6.5                               | Ductal c  | arcinoma <i>in situ</i>           | 203 |  |  |
|     |                                     | 8.6.5.1   | Sonographic findings              | 205 |  |  |
|     | 8.6.6                               | Lobular   | carcinoma <i>in situ</i>          | 207 |  |  |
|     | 8.6.7                               | Inflamma  | atory carcinoma                   | 208 |  |  |
|     | 8.6.8                               | Lymphor   | 210                               |     |  |  |
|     |                                     | 8.6.8.1   | Sonographic features              | 211 |  |  |
| 8.7 | Fibrocy                             | stic Char | nges and Breast Cysts             | 213 |  |  |
|     | 8.7.1                               | Fibrocys  | tic changes and benign            |     |  |  |
|     |                                     |           | tive disorders                    | 213 |  |  |
|     |                                     | 8.7.1.1   | Benign proliferative disorders in |     |  |  |
|     |                                     |           | fibrocystic changes               | 215 |  |  |
|     |                                     | 8.7.1.2   | Sonographic findings              | 216 |  |  |
|     | 8.7.2                               | Fibroade  | enomas                            | 216 |  |  |
|     |                                     | 8.7.2.1   | Sonographic findings              | 217 |  |  |
|     | 8.7.3                               | Fibroade  | enoma variants                    | 219 |  |  |
|     |                                     | 8.7.3.1   | Complex fibroadenomas             | 219 |  |  |
|     |                                     | 8.7.3.2   | Sonographic findings              | 219 |  |  |
|     | 8.7.4                               | Tubular   | adenomas and lactating adenomas   | 220 |  |  |
|     |                                     | 8.7.4.1   | Sonographic findings              | 220 |  |  |
|     | 8.7.5                               | Papillom  |                                   | 221 |  |  |
|     |                                     | 8.7.5.1   | Sonographic findings              | 223 |  |  |
|     | 8.7.6                               | Intramar  | nmary lymph nodes                 | 225 |  |  |
|     |                                     | 8.7.6.1   | Sonographic findings              | 225 |  |  |
|     | 8.7.7                               | Hamarto   | * '                               | 225 |  |  |
|     |                                     | 8.7.7.1   | Sonographic findings              | 226 |  |  |
|     | 8.7.8                               | Lipomas   |                                   | 226 |  |  |
|     |                                     | 8.7.8.1   | Sonographic findings              | 227 |  |  |
|     | 8.7.9                               |           | angiomatous stromal hyperplasia   | 228 |  |  |
|     |                                     | 8.7.9.1   | Sonographic findings              | 228 |  |  |
|     | 8.7.10                              | Hemang    |                                   | 229 |  |  |
|     |                                     | _         | Sonographic findings              | 229 |  |  |
|     | 8.7.11                              | Phyllode  |                                   | 230 |  |  |
|     |                                     | •         | Sonographic findings              | 230 |  |  |
|     | 8.7.12                              | Focal fib |                                   | 232 |  |  |
|     |                                     |           | Sonographic findings              | 232 |  |  |
|     |                                     |           |                                   |     |  |  |







Contents 233 8.7.13 Diabetic mastopathy 8.7.13.1 Sonographic findings 233 8.7.14 Infections and abscesses of the breast 234 8.7.14.1 Sonographic findings 235 8.8 Clinical Usefulness of US-Guided Aspiration 236 and Biopsy 8.8.1 Ultrasound-guided breast aspiration 237 Ultrasound-guided breast biopsy 238 8.8.2 8.8.3 Vacuum-assisted biopsy 240 8.9 Conclusion 240 References 242 **Abnormal Lesion Detection from Breast Thermal Images Using Chaos with Lyapunov Exponents** 255 Mahnaz Etahadtavakol, E. Y. K. Ng, Caro Lucas, and Mohammad Ataei 9.1 Introduction 256 9.2 Time Series 256 9.3 Time-Delay Embedding 257 9.4 Lyapunov Exponents 257 9.5 Computation of the Lyapunov Exponents 259 260 9.5.1 Polynomial model 9.6 Generating the Time Series 261 9.7 **Experimental Results and Discussion** 262 9.7.1 Fractal images 262 9.7.2 Real-world IR images 268 9.8 Conclusion 270 271 References 10 Intelligent Rule-based Classification of Image 275 Features for Breast Thermogram Analysis Gerald Schaefer 10.1 Introduction 275 10.2 Image Features 276 10.3 Fuzzy Rule-based Classification 277 10.3.1 Classification algorithm 277 Experimental results 279 10.4 Ant Colony Optimization Classification 280 10.4.1 Classification algorithm 280 10.4.2 Experimental results 281 10.5 Conclusions 282 Acknowledgments 282 References 282





Contents xi

| $\varphi$ |  |
|-----------|--|
|           |  |

|      |          |             | erties: From Acquisition                     |     |
|------|----------|-------------|----------------------------------------------|-----|
|      |          | merical Si  |                                              | 285 |
|      |          |             | M. Oliveira, Marcus C. Araújo,               |     |
|      |          |             | ne C. Santos, Francisco G. S. Santos,        |     |
|      |          | -           | I. Lyra, Rita C. F. Lima,                    |     |
|      |          |             | Resmini, and Aura Conci                      |     |
| 11.1 | Introduc | _           | recommi, and rear Conci                      | 286 |
| 11.2 |          | ter-Aided D | Diagnosis                                    | 287 |
| 11.2 | 11.2.1   |             | ization in acquiring IR breast images        | 288 |
|      | 11.2.1   | 11.2.1.1    | The mechanical apparatus                     | 288 |
|      |          | 11.2.1.1    | Protocol                                     | 289 |
|      | 11.2.2   | Data stor   |                                              | 291 |
|      | 11.2.2   | 11.2.2.1    | -                                            | 291 |
|      |          | 11.2.2.1    | · · · · · · · · · · · · · · · · · · ·        | 291 |
|      |          | 11.2.2.2    |                                              | 292 |
|      |          | 11 0 0 0    | research application                         |     |
|      |          | 11.2.2.3    | ,                                            | 293 |
|      | 44.0.0   | 11.2.2.4    | Description of the database system           | 293 |
|      | 11.2.3   | 11.2.3.1    | egmentation                                  | 294 |
|      |          |             | Representation of the IR image               | 294 |
|      |          | 11.2.3.2    | Manual segmentation based on                 | 205 |
|      | 44.0.4   | Endon etter | a temperature matrix                         | 295 |
|      | 11.2.4   |             | g features                                   | 296 |
| 44.0 | 11.2.5   |             | ation results                                | 301 |
| 11.3 |          |             | es for Improving the Numerical               | 000 |
|      |          |             | perature Profiles                            | 303 |
|      | 11.3.1   | _           | e geometry of the breast                     | 304 |
|      |          | 11.3.1.1    | Acquiring surrogate geometries               | 304 |
|      |          | 11.3.1.2    | 0 0                                          |     |
|      |          |             | best fits the real breast being studied      | 305 |
|      | 11.3.2   | •           | etric analysis to investigate IR sensitivity | 307 |
|      |          | 11.3.2.1    | The mathematical model                       | 307 |
|      |          | 11.3.2.2    | A parametric study using a phantom           |     |
|      |          |             | 3D geometry                                  | 308 |
|      |          | 11.3.2.3    | Calculating the temperature profile:         |     |
|      |          |             | An example of the use of breast              |     |
|      |          |             | prosthesis and parametric analysis           | 310 |
|      | 11.3.3   |             | on of some breast and tumor properties       | 312 |
|      |          | 11.3.3.1    | The inverse method                           | 313 |
|      |          | 11.3.3.2    | Experimental validation of the               |     |
|      |          |             | methodology                                  | 315 |
|      |          | 11 3 3 3    | Cases analyzed                               | 317 |







| ίij |         |            |              |                                                                  | Contents |
|-----|---------|------------|--------------|------------------------------------------------------------------|----------|
|     |         |            |              |                                                                  |          |
|     | 11.4    | Conclus    | ions         |                                                                  | 321      |
|     | Refere  | ences      |              |                                                                  | 322      |
| 12  | Diffuse | Optical    | lmaging o    | f the Breast: Recent Progress                                    | 333      |
|     | Jun Hu  | i Ho, Jing | Dong, and    | l Kijoon Lee                                                     |          |
|     | 12.1    | Introduc   | tion         |                                                                  | 333      |
|     | 12.2    | Theory     |              |                                                                  | 335      |
|     |         | 12.2.1     | Photon pr    | opagation model                                                  | 335      |
|     |         | 12.2.2     | Diffuse op   | otical spectroscopy                                              | 335      |
|     |         | 12.2.3     | Diffuse co   | orrelation spectroscopy                                          | 337      |
|     |         | 12.2.4     | Diffuse op   | otical tomography                                                | 339      |
|     | 12.3    | Instrume   | entation     |                                                                  | 340      |
|     |         | 12.3.1     | Diffuse op   | otical spectroscopy                                              | 340      |
|     |         | 12.3.2     | Diffuse co   | orrelation spectroscopy                                          | 341      |
|     |         | 12.3.3     | Diffuse op   | otical tomography                                                | 342      |
|     | 12.4    | Clinical   | Application  | S                                                                | 343      |
|     |         | 12.4.1     | Breast ca    | ncer detection/characterization                                  | 343      |
|     |         |            | 12.4.1.1     | Endogenous contrast                                              | 343      |
|     |         |            | 12.4.1.2     | Exogenous contrast                                               | 347      |
|     |         | 12.4.2     | Therapy r    | •                                                                | 347      |
|     | 12.5    | Future o   | of DOI of th |                                                                  | 349      |
|     |         | 12.5.1     |              | illumination                                                     | 349      |
|     |         | 12.5.2     |              |                                                                  | 351      |
|     |         | 12.5.3     | New para     | meters                                                           | 351      |
|     | 12.6    | Conclus    | ion          |                                                                  | 351      |
|     | Refer   | ences      |              |                                                                  | 353      |
| 13  |         |            |              | ic Approach for Breast Cancer<br>rceived Diagnostic Significance |          |
|     | of Cyto | logical F  | eatures a    | nd Feature Usability Analysis of                                 |          |
|     |         | •          |              | r Database                                                       | 361      |
|     |         |            |              | t Sheet, Jyotirmoy Chatterjee,                                   |          |
|     | Manjun  | atha Mah   | adevappa,    | Ajoy Kumar Ray, and Arindam Ghos                                 | h        |
|     | 13.1    | Introduc   | tion         |                                                                  | 362      |
|     | 13.2    |            | -            | red Significance of Cytological                                  |          |
|     |         | Features   | s in Breast  |                                                                  | 364      |
|     |         | 13.2.1     |              | of the survey                                                    | 365      |
|     |         | 13.2.2     | -            | f the experts                                                    | 366      |
|     | 13.3    | -          |              | sconsin Diagnostic Breast Cancer                                 |          |
|     |         |            | ) Database   |                                                                  | 370      |
|     |         | 13.3.1     | •            | of features using feature usability inde                         |          |
|     |         |            | 13.3.1.1     | Homogeneity                                                      | 373      |
|     |         |            | 13.3.1.2     | Class specificity                                                | 373      |
|     |         |            | 13.3.1.3     | Error in decision making                                         | 374      |





Contents xiii

**(** 

| 00 | ntonto |              |                                                   | XIII |
|----|--------|--------------|---------------------------------------------------|------|
|    |        |              |                                                   |      |
|    |        | 13.3.2       | Feature selection                                 | 376  |
|    | 13.4   |              | ons                                               | 377  |
|    | Refere | ences        |                                                   | 379  |
| 14 |        |              | Ablation of Breast Neoplasms                      | 383  |
|    |        | iis del Cura |                                                   |      |
|    |        | Introducti   |                                                   | 383  |
|    | 14.2   | Radiofred    | •                                                 | 384  |
|    |        | 14.2.1       | •                                                 | 384  |
|    |        |              | Technical issues                                  | 384  |
|    | 14.3   |              | quency Ablation in the Breast                     | 385  |
|    |        | •            | e of Ablation                                     | 386  |
|    | 14.5   | Outcome      |                                                   | 389  |
|    |        | Complica     |                                                   | 393  |
|    | 14.7   |              | ons and Future Trends                             | 394  |
|    | Refere | ences        |                                                   | 395  |
| 15 |        | -            | e Thermal Ablation for Breast Cancer              | 399  |
|    | Feng W |              |                                                   |      |
|    |        | Introducti   |                                                   | 400  |
|    | 15.2   |              | of Thermal Ablation Technique                     | 401  |
|    |        |              | Radiofrequency ablation (RFA)                     | 401  |
|    |        |              | Laser ablation (LA)                               | 401  |
|    |        |              | Microwave ablation (MWA)                          | 403  |
|    |        |              | Cryoablation                                      | 403  |
|    |        |              | High-intensity focused ultrasound (HIFU) ablation | 403  |
|    | 15.3   |              | Principles of Thermal Ablation                    | 404  |
|    | 15.4   |              | sms of Thermal Ablation                           | 404  |
|    |        | 15.4.1       | Direct thermal and nonthermal effects             |      |
|    |        |              | on tumors                                         | 405  |
|    |        |              | Thermal effects on tumor vasculature              | 405  |
|    |        |              | Indirect effects on tumor                         | 406  |
|    | 15.5   | Clinical S   | tudies on Thermal Ablation of                     |      |
|    |        | Breast Ca    |                                                   | 407  |
|    |        |              | Radiofrequency ablation                           | 407  |
|    |        |              | Laser ablation                                    | 410  |
|    |        |              | Microwave ablation                                | 412  |
|    |        |              | Cryoablation                                      | 413  |
|    |        | 15.5.5       | High-intensity focused ultrasound ablation        | 415  |
|    | 15.6   |              | Immune Response after Thermal Ablation            | 417  |
|    |        |              | Antitumor immune response after RFA               | 418  |
|    |        |              | Antitumor immune response after LA                | 421  |
|    |        | 15.6.3       | Antitumor immune response after cryoablation      | 421  |
|    |        | 15.6.4       | Antitumor immune response after MWA               | 424  |





| xiv |         |          |                       | Cor                                                         | ntents |
|-----|---------|----------|-----------------------|-------------------------------------------------------------|--------|
|     |         | 15.6.5   | Antitumo              | r immune response after HIFU ablation                       | 425    |
|     | 15.7    | Summai   |                       |                                                             | 427    |
|     | Refer   | ences    | ,                     |                                                             | 429    |
| 16  |         |          | owave Ac<br>Detection | oustic Imaging for                                          | 453    |
|     |         |          |                       | nd Zhiping Lin                                              | 455    |
|     | 16.1    | Introduc |                       | na Zniping Lin                                              | 453    |
|     | 16.1    |          |                       | ave based Imaging Modelity                                  | 454    |
|     | 10.2    | 16.2.1   | -                     | ave-based Imaging Modality<br>property of biological tissue | 454    |
|     |         | 16.2.1   |                       | e imaging                                                   | 456    |
|     |         | 16.2.3   |                       |                                                             | 457    |
|     | 16.3    |          |                       | ve-induced thermo-acoustic imaging vave Acoustic Imaging:   | 437    |
|     | 10.5    |          |                       |                                                             | 459    |
|     |         | 16.3.1   | al Exampl             |                                                             | 460    |
|     |         | 16.3.1   | -                     | construction algorithm<br>al simulation results             | 460    |
|     | 16.4    |          |                       |                                                             | 464    |
|     | 10.4    | 16.4.1   | ary Protot            |                                                             | 404    |
|     |         | 10.4.1   | simultane             | g microwaves and acoustic waves                             | 464    |
|     |         | 16.4.2   |                       | nsmitter design                                             | 466    |
|     | 16.5    | Conclus  |                       | isinitter design                                            | 470    |
|     |         | ences    | 1011                  |                                                             | 470    |
|     | IVEIGI  | CIICES   |                       |                                                             | 470    |
| 17  |         |          |                       | pecific Proteins in Breast                                  |        |
|     |         |          | •                     | w-Core Photonic Crystal Fiber                               | 475    |
|     |         |          |                       | han, Vengalathunadakal Kuttinarayanan                       |        |
|     | Shinoj, |          |                       | nabhan, and Parasuraman Padmanabhan                         |        |
|     | 17.1    | Introduc | tion                  |                                                             | 475    |
|     | 17.2    |          | c Crystal F           |                                                             | 477    |
|     |         | 17.2.1   |                       | e-index scaling law                                         | 478    |
|     |         | 17.2.2   | Selection             | of fibers                                                   | 480    |
|     | 17.3    | Sensing  | Mechanis              | sm Based on Evanescent Waves                                | 482    |
|     |         | 17.3.1   | Convention            | onal-fiber-based evanescent wave sensing                    | 482    |
|     |         | 17.3.2   | Evanesce              | ent wave sensing using HC-PCF                               | 482    |
|     | 17.4    | Material | s and Met             |                                                             | 483    |
|     |         | 17.4.1   | Cell cultu            | re and sample preparation                                   | 483    |
|     | 17.5    | Results  | and Discu             | ssion                                                       | 484    |
|     |         | 17.5.1   | HC-PCF-               | based fluorescence detection                                | 484    |
|     |         |          | 17.5.1.1              | Spectroscopic analysis                                      | 486    |
|     |         |          | 17.5.1.2              | Image processing method                                     | 488    |
|     | 17.6    | Conclus  | ion                   |                                                             | 489    |
|     | Ackno   | owledgme | nts                   |                                                             | 490    |
|     | Refer   | ences    |                       |                                                             | 490    |





Contents xv

| 18 | Quality                                         | / Assurar                                   | nce in Digital Mammography                   | 497 |  |  |  |  |
|----|-------------------------------------------------|---------------------------------------------|----------------------------------------------|-----|--|--|--|--|
|    | Kwan-Hoong Ng, Tânia Aparecida Correia Furquim, |                                             |                                              |     |  |  |  |  |
|    | and Noriah Jamal                                |                                             |                                              |     |  |  |  |  |
|    | 18.1                                            | Introduc                                    | etion                                        | 498 |  |  |  |  |
|    |                                                 | 18.1.1 Scope                                |                                              |     |  |  |  |  |
|    | 18.2                                            | Technical Quality Control                   |                                              |     |  |  |  |  |
|    | 18.3                                            | Testing by Medical Physicists and Equipment |                                              |     |  |  |  |  |
|    |                                                 | Perform                                     | ance                                         | 501 |  |  |  |  |
|    |                                                 | 18.3.1                                      | Mammography unit assembly evaluation         | 502 |  |  |  |  |
|    |                                                 | 18.3.2                                      | Compression force and thickness accuracy     | 502 |  |  |  |  |
|    |                                                 |                                             | 18.3.2.1 Compression force                   | 502 |  |  |  |  |
|    |                                                 |                                             | 18.3.2.2 Thickness accuracy                  | 503 |  |  |  |  |
|    |                                                 | 18.3.3                                      | Site technique factors for SDNR              |     |  |  |  |  |
|    |                                                 |                                             | (radiographer baseline)                      | 503 |  |  |  |  |
|    |                                                 | 18.3.4                                      | Automatic exposure control evaluation        | 504 |  |  |  |  |
|    |                                                 |                                             | 18.3.4.1 Thickness behavior                  | 504 |  |  |  |  |
|    |                                                 |                                             | 18.3.4.2 Density control                     | 505 |  |  |  |  |
|    |                                                 | 18.3.5                                      | Baseline for detector performance            | 506 |  |  |  |  |
|    |                                                 | 18.3.6                                      | Spatial linearity and geometric distortion   |     |  |  |  |  |
|    |                                                 |                                             | of the detector                              | 509 |  |  |  |  |
|    |                                                 | 18.3.7                                      | Detector ghosting                            | 510 |  |  |  |  |
|    |                                                 | 18.3.8                                      | Detector uniformity and artifact evaluation  |     |  |  |  |  |
|    |                                                 | 18.3.9                                      | Modulation transfer function                 | 512 |  |  |  |  |
|    |                                                 |                                             | 18.3.9.1 High-contrast edge                  | 512 |  |  |  |  |
|    |                                                 |                                             | 18.3.9.2 High-contrast resolution pattern    | 513 |  |  |  |  |
|    |                                                 | 18.3.10                                     | Limiting spatial resolution                  | 514 |  |  |  |  |
|    |                                                 | 18.3.11                                     | Half-value layer                             | 515 |  |  |  |  |
|    |                                                 | 18.3.12                                     | Incident air kerma at the entrance surface   |     |  |  |  |  |
|    |                                                 |                                             | of PMMA slabs                                | 516 |  |  |  |  |
|    |                                                 | 18.3.13                                     | Mean glandular dose                          | 516 |  |  |  |  |
|    |                                                 |                                             | 18.3.13.1 IAEA method                        | 517 |  |  |  |  |
|    |                                                 |                                             | 18.3.13.2 ACR method                         | 517 |  |  |  |  |
|    |                                                 | 18.3.14                                     | Collimation system                           | 518 |  |  |  |  |
|    |                                                 | 18.3.15                                     | Image display quality                        | 519 |  |  |  |  |
|    |                                                 |                                             | 18.3.15.1 Geometric distortions              | 520 |  |  |  |  |
|    |                                                 |                                             | 18.3.15.2 Luminance uniformity               | 520 |  |  |  |  |
|    |                                                 |                                             | 18.3.15.3 Luminance response and contrast    | 520 |  |  |  |  |
|    |                                                 |                                             | 18.3.15.4 Ambient lighting                   | 520 |  |  |  |  |
|    |                                                 | 18.3.16                                     | Laser printer (where applicable)             | 520 |  |  |  |  |
|    |                                                 |                                             | Phantom image quality                        | 522 |  |  |  |  |
|    | 18.4                                            |                                             | ogist Testing                                | 522 |  |  |  |  |
|    |                                                 | 18.4.1                                      | Inspection, cleaning, and viewing conditions |     |  |  |  |  |
|    |                                                 |                                             | of monitors and view boxes                   | 523 |  |  |  |  |





<u>xvi</u> Contents

**(** 

| 18.4.2        | Laser printer                                     | 523 |
|---------------|---------------------------------------------------|-----|
|               | 18.4.2.1 Sensitometry                             | 523 |
|               | 18.4.2.2 Artifacts                                | 523 |
|               | 18.4.2.3 Printed image quality                    | 524 |
| 18.4.3        | Phantom image quality                             | 524 |
| 18.4.4        | Digital mammography equipment daily checklist     | 524 |
| 18.4.5        | Daily and monthly flat-field phantom image test   | 524 |
| 18.4.6        | Visual inspection for artifacts (CR systems only) | 525 |
| 18.4.7        | Image plate erasure (CR systems only)             | 525 |
| 18.4.8        | Monitor QC                                        | 526 |
| 18.4.9        | Weekly QC test object and full-field artifacts    | 526 |
| 18.4.10       | Safety and function checks of examination         |     |
|               | room and equipment                                | 526 |
| 18.4.11       | Repeat image analysis                             | 527 |
| 18.4.12       | Spatial resolution test (CR and scanning          |     |
|               | systems only)                                     | 527 |
| Appendix 18.1 | ACR Summary of Medical Physicist's and            |     |
|               | Technologist's QC Tests: General Electric         | 528 |
| Appendix 18.2 | ACR Summary of Medical Physicist's and            |     |
|               | Technologist's QC Tests: Hologic                  | 530 |
| Appendix 18.3 | IAEA Safety and Function Checklist of             |     |
|               | Examination Room and Equipment                    | 531 |
| References    |                                                   | 532 |
|               |                                                   |     |



Index



535



### **Preface**

Breast cancer is an abnormal growth of cells in the breast, usually in the inner lining of the milk ducts or lobules. It is currently the most common type of cancer in women in developed and developing countries. The number of women affected by breast cancer is gradually increasing and remains as a significant health concern. Hence, the early detection of breast cancer can improve the survival rate and quality of life. Therefore, today, newer modalities are available to more accurately detect breast cancer. Researchers are continuously working to develop novel techniques to detect early stages of breast cancer. This book covers breast cancer detection using different imaging modalities such as mammography, magnetic resonance imaging, computed tomography, positron emission tomography, ultrasonography, infrared imaging, and other modalities.

Architectural distortion is one of the major causes of false-negative findings in the detection of early stages of breast cancer. Chapter 1 presents methods for computer-aided detection of architectural distortion in mammograms acquired prior to the diagnosis of breast cancer in the interval between scheduled screening sessions. The results are promising and indicate that the proposed methods can detect architectural distortion in prior mammograms taken 15 months (on average) before clinical diagnosis of breast cancer, with a sensitivity of 0.8 at 5.2 false positives per patient.

A computer-aided system for the automated detection of normal, benign, and cancerous breasts using texture features extracted from digitized mammograms and data mining techniques is proposed in Chapter 2. The novelty of this work is to automatically classify the mammogram into normal, benign, and malignant classes using the texture features alone, with an efficiency of 93.3% and sensitivity of 92.3% using a fuzzy classifier.

Breast cancer diagnosis by combination of fuzzy systems and an ant colony optimization algorithm is proposed in Chapter 3. Results on the breast cancer diagnosis dataset from the University of California Irvine machine learning repository show that the proposed FUZZY-ACO would be capable of classifying cancer instances with a high accuracy rate and adequate interpretability of extracted rules.

xvii



xviii Preface

Chapter 4 discusses a computer-aided diagnosis system tested on magnetic resonance datasets obtained from different scanners, with a variable temporal and spatial resolution and on both fat-sat and non–fat-sat images, and has shown promising results. This type of system could potentially be used for early diagnosis and staging of breast cancer to reduce reading time and to improve detection, especially of the smaller satellite nodules.

Imaging plays a pivotal role in the evaluation of metastatic spread of breast cancer disease. Chapter 5 gives an overview of the recent developments in breast cancer imaging, in terms of instrumentation and clinical applications. In addition, the theoretical framework behind advanced imaging modalities is highlighted to provide background knowledge to the reader, and potential future research directions are also presented.

The role of positron emission tomography is established in the practice of oncology. The advances in functional and molecular imaging techniques have increased the accuracy in the diagnostic evaluation of breast cancers and is discussed in detail in Chapter 6.

Chapter 7 discusses 3D whole-breast ultrasonography, which can provide the entire breast anatomy for later review. The 3D whole-breast ultrasound procedure and the training time are simpler and shorter than the traditional 2D US. It also provides interoperator consistency, and its reproducibility is better for follow-up studies.

Recent progress in medical ultrasound has paved the way for the evaluation of breast cancer. State-of-the-art high-resolution ultrasound can detect tiny breast lesions as small as 1–2 mm in size, and sometimes microcalcifications even less than 0.5 mm, or small carcinomas 3–6 mm in diameter. Chapter 8 presents an overview of the recent developments in ultrasound imaging of breast cancer, in terms of instrumentation and clinical applications.

Nonlinear features such as Lyapunov exponents are used to differentiate malignant and benign breast thermograms in Chapter 9. This work can be extended for classifying different stages of breast cancer. The authors are currently working toward these objectives.

A set of image features describing bilateral differences between left and right breast regions in thermograms is described in Chapter 10. These features are then used in a pattern classification stage to discriminate malignant cases from benign ones. Classification is performed by fuzzy if-then rules and applies a genetic algorithm to optimize the rule base, and secondly uses an ant colony optimization classification algorithm. Both approaches have shown good classification accuracy.

Infrared imaging has shown to be a promising technique for the early diagnosis of breast pathologies and as a screening technique. The concept of a combined diagnostic enables a high degree of specificity and sensibility in such diagnosis. Chapter 11 presents a concept of merging







Preface xix

information from the images with other modalities of examination, such as mammograms and ultrasound, in order to improve the early detection of breast pathologies, including cancer.

Chapter 12 discusses diffuse optical imaging, which makes use of diffuse light to probe deep tissues by taking advantage of low tissue absorption within the near-infrared wavelength range (650–900 nm). The optical measurements obtained can be used to calculate optical properties, namely absorption and scattering within tissues. This, in turn, can provide information about physiological parameters within tissues, such as oxy- and deoxy-haemoglobin, and water and lipid, all of which can be utilized in the detection, characterization, and therapy monitoring of breast cancer.

Cytopathology is a branch of pathology that studies and diagnoses diseases on the cellular level, using samples of free cells or tissue fragments. Chapter 13 describes the results of a study of the features that are used by physicians and computers to diagnose cancer based on features in fine-needle aspiration cytology images. It discusses the significance of a cytological feature in representing its true ability to discriminate benign and malignant conditions of a breast lump in the Wisconsin Diagnostic Breast Cancer database.

Only a small number of studies have been reported on breast radiofrequency ablation, and most of them have included the posterior surgical excision of the treated breast. Chapter 14 presents the future trends in the development of more-specific radiofrequency algorithms for breast cancer treatment, to improve the results, determine the setting of the specific indications for the technique, and expand the study of long-term results and survival.

Breast conserving therapy is the gold-standard option for patients with early-stage breast cancer. The surgical excision removes the entire tumor with a negative surgical margin and helps to preserve the breast tissue as far as possible. Chapter 15 explains minimally invasive ablative techniques, which may offer complete tumor ablation, with less psychological morbidity, better cosmetic results, and shorter hospital stay.

A microwave-based imaging modality is an emerging noninvasive medical imaging approach exploring the dielectric property of biological tissue that shows great potential in breast cancer detection. Chapter 16 discusses a correlated microwave acoustic imaging modality and numerical simulation using finite-difference time-domain analysis. It is clearly shown that a combination of microwave-based imaging modalities is expected to provide an efficient diagnostic method for breast cancer detection in the future.

Fluorescence-based bioassays are novel diagnostic tools that are available to clinicians for deciding future treatment and to researchers for monitoring biological functions that may lead to novel investigations.







xx Preface

The different aspects of photonic crystal fiber, its guiding mechanism, the refractive index law, etc. are analyzed and explained in Chapter 17. The proposed methodology is implemented in an array format of immuno recognition of specific proteins using a hollow-core photonic crystal fiber.

An overview of a quality-assurance program for digital mammography is discussed in Chapter 18. This overview includes the quality-control test procedures based on the American College of Radiology and the International Atomic Energy Agency. The role of medical physicists in the mammography quality-assurance programs, including acceptance, annual, and regular quality-control testing, is briefly presented.

In this book, we have made an honest effort to present information and methodologies for accurate diagnosis of breast cancer to help researchers, doctors, teachers, and students in biomedical science and engineering.

> E. Y. K. Ng U. Rajendra Acharya Rangaraj M. Rangayyan Jasjit S. Suri January 2013







### **List of Contributors**

#### Hiroyuki Abe

The University of Chicago Medicine, USA

#### U. Rajendra Acharya

Ngee Ann Polytechnic, Singapore and University of Malaya, Malaysia

#### Silvano Agliozzo

im3D S.p.A., Italy

#### Marcus C. Araújo

Federal University of Pernambuco, Brazil

#### **Mohammad Ataei**

University of Isfahan, Iran

#### Shantanu Banik

University of Calgary, Canada

#### Alberto Bert

im3D S.p.A., Italy

#### Luciete A. Bezerra

Federal University of Pernambuco, Brazil

#### Tiago B. Borschartt

Fluminense Federal University, Brazil

#### **Ruey-Feng Chang**

National Taiwan University, Taiwan

#### Jyotirmoy Chatterjee

Indian Institute of Technology Kharagpur, India

#### **Chung-Ming Chen**

National Taiwan University, Taiwan

#### Jie-Zhi Cheng

National Taiwan University, Taiwan

#### **Yi-Hong Chou**

Taipei Veterans Hospital, Taiwan and National Yang-Ming University, Taiwan

#### **Aura Conci**

Fluminense Federal University, Brazil

#### Massimo De Luca

Institute for Cancer Research and Treatment, Italy

#### José Luis del Cura

Basque Country University, Spain

xxi





#### J. E. Leo Desautels

University of Calgary, Canada

#### Jing Dong

Nanyang Technological University, Singapore

#### Mahnaz Etahadtavakol

Isfahan University of Medical Sciences, Iran

#### Tânia Aparecida Correia Furquim

Universidade de São Paulo, Brazil

#### Fei Gao

Nanyang Technological University, Singapore

#### Hrushikesh Garud

Indian Institute of Technology Kharagpur, India and Texas Instruments, India

#### Arindam Ghosh

Kharagpur Sub-Divisional Hospital, India

#### Valentina Giannini

Institute for Cancer Research and Treatment, Italy and Politecnico di Torino, Italy

#### Jun Hui Ho

Nanyang Technological University, Singapore

#### **Andrew Tan Eik Hock**

Singapore General Hospital, Singapore

#### Noriah Jamal

Malaysian Nuclear Agency, Malaysia

#### Kijoon Lee

Nanyang Technological University, Singapore

#### Rita C. F. Lima

Federal University of Pernambuco, Brazil

#### **Zhiping Lin**

Nanyang Technological University, Singapore

#### Caro Lucas

University of Tehran, Iran

#### Paulo R. M. Lyra

Federal University of Pernambuco, Brazil

### Manjunatha

#### Mahadevappa

Indian Institute of Technology Kharagpur, India

#### Filippo Molinari

Politecnico di Torino, Italy

#### Lia Morra

im3D S.p.A., Italy







#### Vadakke Matham Murukeshan

Nanyang Technological University, Singapore

#### E. Y. K. Ng

Nanyang Technological University, Singapore

#### **Kwan-Hoong Ng**

University of Malaya, Malaysia

#### Marília M. Oliveira

Federal University of Pernambuco, Brazil

#### Parasuraman Padmanabhan

Singapore BioImaging Consortium, Singapore

#### Saraswathi Padmanabhan

Nanyang Technological University, Singapore

#### Diego Persano

im3D S.p.A., Italy

#### Rangaraj M. Rangayyan

University of Calgary, Canada

#### **Ajoy Kumar Ray**

Indian Institute of Technology Kharagpur, India and Bengal Engineering and Science University, India

#### **Daniele Regge**

Institute for Cancer Research and Treatment, Italy

#### Roger Resmini

Fluminense Federal University, Brazil

#### Tiago L. Rolim

Federal University of Pernambuco, Brazil

#### Francisco G. S. Santos

Federal University of Pernambuco, Brazil

#### Ladjane C. Santos

Federal University of Pernambuco, Brazil

#### **Gerald Schaefer**

Loughborough University, United Kingdom

#### **Debdoot Sheet**

Indian Institute of Technology Kharagpur, India

#### Yi-Wei Shen

National Taiwan University, Taiwan

#### Vengalathunadakal Kuttinarayanan Shinoj

Nanyang Technological University, Singapore

#### S. Vinitha Sree

Nanyang Technological University, Singapore

#### Jasjit S. Suri

Global Biomedical Technologies Inc., CA, USA and Idaho State University, USA (Aff.)







#### Andrew Eik Hock Tan

Raffles Hospital, Singapore

#### **Cher Heng Tan**

Tan Tock Seng Hospital, Singapore

#### Jen-Hong Tan

Ngee Ann Polytechnic, Singapore

#### Chui-Mei Tiu

Taipei Veterans Hospital, Taiwan and National Yang-Ming University, Taiwan

#### Mariana J. A. Viana

Federal University of Pernambuco, Brazil

#### Anna Vignati

Institute for Cancer Research and Treatment, Italy

#### Feng Wu

Chongqing Medical University, China, University of Oxford, and Oxford University Hospitals, Oxford, United Kingdom

#### Wanying Xie

Singapore General Hospital, Singapore

#### Ye Xu

Philips Research, USA

#### Yuanjin Zheng

Nanyang Technological University, Singapore







### **Acronyms and Abbreviations**

ABSN angles between surface normals
ABVS Automated Breast Volume Scanner

ACO ant colony optimization

ACR American College of Radiology

ACS ant colony system

AEC automatic exposure control

AI artificial intelligence

AJCC American Joint Committee on Cancer

ALA 5-aminolevulinic acid
ANN artificial neural network
ANOVA analysis of variance
APC antigen-presenting cell
APD avalanche photodiode

ART algebraic reconstruction technique

AUC area under ROC curve

AUCEC area under the contrast-enhancement curve

B+F base + fog BC breast cancer

BCDSG Breast Cancer Disease Site Group

BEM boundary element method

BFGS Broyden–Fletcher–Goldfarb–Shanno (method)

BHTE bioheat transfer equation

BIRADS<sup>®</sup> Breast Imaging Reporting and Data System

BIRADS-MRI BIRADS for MRI
bpp bits per pixel
BRCA-1, -2 breast cancer genes
BS bone scintigraphy
BSE breast self-examination

BWI bound water index
CaCo colorectal cancer

CAD computer-aided diagnosis
CADe computer-aided detection
CADx computer-aided diagnosis

CAM combined autocorrelation method

xxv







CBE clinical breast examination
CCD charge-coupled device
CDS clinical decision support
CDSS clinical decision support system

CDU color Doppler ultrasound

CECT contrast-enhanced computed tomography

CFD computational fluid dynamics

CI confidence interval CLS curvilinear structure

CMAI correlated microwave acoustic imaging

CMM coordinate measuring machine

CMOS complementary metal-oxide semiconductor

**CNS** central nervous system CR computed radiography CR contrast response CTcomputed tomography **CTL** cytotoxic T lymphocyte **CTS** chaotic time series CW continuous wave **CXR** chest radiology DC dendritic cells

DCE-MRI dynamic contrast-enhanced MRI

DCIS ductal carcinoma in situ

DCS diffuse correlation spectroscopy

DD density difference

DDSM Digital Database for Screening Mammography

del detector element
DeTr decision tree

DICOM Digital Imaging and Communications in Medicine

DM digital mammography
DMD digital micromirror device

DMIST Digital Mammographic Imaging Screening Trial

DOI diffuse optical imaging
DOS diffuse optical spectroscopy
DOT diffuse optical tomography

DR digital radiology

DRS diffuse reflectance spectroscopy

DW diffusion weighted

E-M expectation maximization

EGFR epidermal growth factor receptor

EI exposure index EM electromagnetic

EORTC European Organization for Research and Treatment of Cancer







ER estrogen receptor

ESAK entrance surface air kerma **ESF** edge spread function EWevanescent wave fat-sat fat saturated **FCC** fibrocystic change FD frequency domain

fluorodeoxyglucose (18F) **FDG FDM** finite-difference method

**fDOT** fluorescence diffuse optical tomography

**FDTD** finite-difference time domain

**FEM** finite-element method fluoro-17β-estradiol FES

**FFDM** full-field digital mammography

FG fibroglandular FG fractal geometry

FLDA Fisher linear discriminant analysis

FN false negative

**FNA** fine-needle aspiration

**FNAC** fine-needle aspiration cytology

**FNN** false nearest neighbor

FP false positive **FROC** free-response ROC FS feature selection **FUI** feature usability index

**GLCM** gray-level co-occurrence matrix

**GMM** Gaussian mixture model

**GSDF** grayscale standard display function

**GUI** graphical user interface H&E hematoxylin-eosin **HCC** hepatocellular carcinoma

**HC-PCF** hollow-core photonic crystal fiber

**HC/UFPE** Clinical Hospital of the Federal University of

Pernambuco

**HIFU** high-intensity focused ultrasound

HL7 health level 7 **HNG** high nuclear grade

**HRT** hormone replacement therapy

**HSP** heat shock protein HVL half-value layer

**IAEA** International Atomic Energy Agency

**ICG** indocynanine-green **IDC** invasive ductal carcinoma







IFN interferon

IG-NIRS image-guided NIR spectroscopy

IM internal mammary

ING intermediate nuclear grade

IR infrared

ITK Insight Toolkit IV intravenous

JAFROC jackknife alternative free-response ROC

JND just-noticeable difference k-NN k-nearest neighbor

LA laser ablation

LBP local binary pattern

LC-VCO inductor/capacitor voltage-controlled oscillator

LCIS lobular carcinoma in situ
LE Lyapunov exponent
LNG low nuclear grade
LSM least-square method

LTB lesion-to-background (ratio)

LUT lookup table
MCC microcalcification
MD mid-density

MGD mean glandular dose

MGH Massachusetts General Hospital

MIAS Mammographic Image Analysis Society

MIP maximum-intensity projection

MIPT maximum-intensity projection over time mIPT mean-intensity projection over time

ML maximum likelihood

MOF microstructured optical fiber

MPV mean pixel value

MQSA Mammography Quality Standards Act

MR magnetic resonance

MRI magnetic resonance imaging MRS magnetic resonance spectroscopy

MTAI microwave-induced thermoacoustic imaging

MTF modulation transfer function

MWA microwave ablation MWI microwave imaging

NADH nicotinamide adenine dinucleotide plus hydrogen

NBC Naïve Bayesian classifier

NICE National Institute for Health and Clinical Excellence

(UK)

NIR near infrared







NPV negative predictive value

OI optical index

OO object-oriented (model)
ORD object-relational database

PASH pseudo-angiomatous stromal hyperplasia

PBG photonic bandgap

PBS phosphate-buffered saline PCF photonic crystal fiber PD progressive disease

PEM positron emission mammography
PET positron emission tomography
PET-CT PET with computed tomography
PDU power Doppler ultrasound

PDU power Doppler ultrasound
PHA phytohaemagglutinin
PMMA poly(methyl methacrylate)
PMT photomultiplier tube

PNN probabilistic neural network

PO pulse oximeter
PPIX protoporphyrin IX
PPV positive predictive value

PR partial response
PR progesterone receptor
QA quality assurance

QAP quality assurance program

QC quality control

QDA quadratic discriminant analysis

RBF radial basis function

RECIST response evaluation criteria in solid tumors

RF radiofrequency

RFA radiofrequency ablation

RI refractive index RI resistivity index

ROC receiver operating characteristic

ROI region of interest

ROL reference operating level RPS reconstructed phase space S/C signal-to-clutter ratio

SD stable disease

SDNR signal-difference-to-noise ratio SEM scanning electron microscope SFM screen-film mammography

SI shape index

SID source-to-image distance





SHH Sacred Heart Hospital

SIRT simultaneous iterative reconstruction technique

SLNB sentinel lymph node biopsy

SMPTE Society of Motion Picture and Television Engineers

SNR signal-to-noise ratio

SPAD single-photon avalanche diode

SPECT single-photon emission computed tomography

SQP sequential quadratic programming

std standard deviation

STIR short tau inversion recovery

StO<sub>2</sub> tissue oxygenation or oxygen saturation
SUVmax maximum standardized uptake value
SUVmean mean standardized uptake value
SVD singular value decomposition
SVM support vector machine
TBS tris-buffered saline
TBST tris-buffered saline/Tween

TD time domain

TDE time-delay embedding
TDLU terminal ductalobular unit
THC total haemoglobin concentration

THI tissue harmonic imaging
TIL tumor-infiltrating lymphocyte

TN true negative

TNF tumor necrosis factor

TP true positive

TPSF temporal point spread function

TS time series

TSFC texture shape feature coding
UCI University of California Irvine
US ultrasound/ultrasonography

US NCI United States National Cancer Institute
USPIO ultrasmall superparamagnetic iron oxide

UWB ultrawideband

VAB vacuum-assisted biopsy VOI volume of interest

WB whole body

WDBC Wisconsin Diagnostic Breast Cancer (database)
WFUSM Wake Forest University School of Medicine

WHO World Health Organization

WU Washington University in St. Louis



