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Preface

My search for universal and comprehensive literature on dispersive optical
spectroscopy revealed many gaps. The books on very basic information are
rather theoretical and dig deep into arithmetic derivations to calculate
spectrometers, illumination, and detection. The books on the different
applications of optical spectroscopy are mainly “cookbooks” and do not
explain why something should be done in a certain way. Books with
comprehensive content are available from the vendors of dispersers, spectro-
meters, detectors, and systems—they naturally feature the advantages of the
supported products but offer no overall view.

For more than twenty years, I have calculated and delivered special
dispersive spectroscopy systems for different applications. In the time between
inquiry and decision, the customers wanted to justify my presentation and
compare it. A common problem was finding useful references that could be
used to verify my calculations and predictions. So, again and again, I wrote
long letters combining the different parameters of the project presented.
Several of my customers—industrial project managers as well as researchers—
not only acknowledged the proposals but also often used the papers to check
the instrumental performance at delivery. Because the proposals fit the
requirements and the predictions were at least reached, their confidence was
earned. Customers used my papers for internal documentation and teaching.
Several asked me to provide the know-how in a general, written database in
order to close the gap between theory, practice, and applications. After my
retirement from regular work, I did just that, and published my writing on my
homepage (www.spectra-magic.de). Now, the content has been improved and
extended into a pair of printed books, the first of which you are reading now.

The aim of this book is to supply students, scientists, and technicians
entering the field of optical spectroscopy with a complete and comprehensive
tutorial; to offer background knowledge, overview, and calculation details to
system designers for reference purpose; and to provide an easy-to-read
compendium for specialists familiar with the details of optical spectroscopy.
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Glossary of Symbols
and Notation

A Absorbance (extinction) in photometric absorption
measurements

A Geometric area
A Light angle inside a prism
ADC (A/D-C) Analog-to-digital converter
AiG Effective disperser area at a given disperser angle
AiM Illuminated area of the focusing mirror
B Bandwidth
C Capacity
C Contrast; ratio of useful signal/disturbance
c0 Speed of light
CCD Charge-coupled device
d Deflection angle at the prism
d Dispersed beam after a grating
D* Numeric capability of an IR detector for the recovery of

low signals
dB Decibel
dx Focus displacement after thermal change
dy Focus increase after thermal change
e Base of the natural logarithm
E Deformation factor at the exit of a spectrometer
e� Electron
E(l) Irradiance of a light beam on a normalized surface
el Elbow angle
eV Electron volt
f Focal length
f Frequency
fc Angular frequency
FSR Free spectral range
FWHM Full width at half maximum
h Planck’s constant (6.626 � 10�34 Js)
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h Slit height
H Total aberration
hb Number of pixels binned together
I Parallel incident beam to grating or prism
i1 Angle of the prism’s incident light related to N
J Joule
k Absorption coefficient of a material
k Boltzmann’s constant (1.381 � 10�23 JK�1)
k Grating constant for the distance of the grating lines
K Kelvin
K Thermal dilatation coefficient
L Inductivity
L Luminosity, light flux in spectrometers
L(l) Radiance
LN Liquid nitrogen
m Modulation factor in lifetime measurements

by phase/modulation
m Spectral order number
M Magnification factor
M Radiant emittance/exitance
MCP Microchannel plate; also, microchannel-plate

image-intensifier system
ms Minimum slit width
n f-number
n Refractive index
n Total number of lines in a grating
N The normal of a grating or prism
O Aberration
O1 Basic aberration
Oss Additive aberration
P Power
PMT Photomultiplier tube
PPS Pulses per second; also, events per second
PSD Phase-sensitive detector (in the lock-in); also, position-

sensitive (counting) detector
Q Energy of radiation R; also, the numerical resolution
Q Ratio of the numerical resolution Rr/Rp

Q Quality factor
QE Quantum efficiency
r Radius of curved slits; also, the distance of the slit to the

instrument’s center
R Normalized reflectance of a sample
R Numeric resolution
R Resistance
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RD Reciprocal dispersion
ROI Region of interest
Rp Theoretical resolution of a dispersing element
rp Absolute value of parallel polarization
rs Absolute values of perpendicular polarization
Rr Real experimental resolution
s Constant of thermal diffusion
SL Number of vertical lines of a CCD
SNR (S/N-R) Signal-to-noise ratio
sr Steradian
SR Number of horizontal register pixels of a CCD
STD Standard deviation
T Temperature; also, thermal change
T Normalized transmission in photometric applications
w Median distance of a mirror to the center line or grating

center axis
W Active grating or mirror width
W Electrical or optical work
x Geometric dilation as a function of thermal change
x Half the inclusion angle at the grating
y Geometric increase of the focal spot as a function of

thermal change and dilatation
a Angle of the light illuminating the grating or prism with

respect to N
b Angle of the diffracted or refracted light leaving the

disperser with respect to N
d Inclusion angle of the light at the disperser originating from

the lateral distance and width of the mirrors
d Phase angle or phase shift ellipsometry (SE)
D Imaginary part of ellipsometric data
:1 Angle of the grating-impinging beam
:2 Angle of the beam leaving the grating
i Internal off-axis angle
ih Horizontal off-axis angle in a spectrometer
iv Vertical off-axis angle in a spectrometer
l Wavelength
ν Oscillation frequency of a light wave
~ν Frequency of a light wave presented as a wavenumber
r Complex result of ellipsometric data
s Statistical parameter often used for deviations
t Time constant
F Angle of sample illumination in ellipsometry
F Median grating angle
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F Phase angle/phase shift in phase/modulation lifetime
measurements

F Radiant power/flux
� Real part of ellisometric data
v Angular frequency
v Normalized cone angle of illumination
V Acceptance angle
V Real and normalized aperture of a spectrometer; also,

light-guiding factor
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