TISSUE OPTICS Light Scattering Methods and

Instruments for Medical Diagnostics

THIRD EDITION

TISSUE OPTICS Light Scattering Methods and Instruments for Medical Diagnostics

Valery Tuchin

SPIE PRESS Bellingham, Washington USA Library of Congress Cataloging-in-Publication Data

Tuchin, V. V. (Valerii Viktorovich), author.
Tissue optics : light scattering methods and instruments for medical diagnosis / Valery Tuchin. – Third edition.
pages cm
Includes bibliographical references and index.
ISBN 978-1-62841-516-2
1. Tissues–Optical properties. 2. Light–Scattering. 3. Diagnostic imaging. 4. Imaging systems in medicine. I. Title.
QH642.T83 2014
616.07'54–dc23

2014039083

Published by

SPIE P.O. Box 10 Bellingham, Washington 98227-0010 USA Phone: +1 360.676.3290 Fax: +1 360.647.1445 Email: books@spie.org Web: http://spie.org

Copyright © 2015 Society of Photo-Optical Instrumentation Engineers (SPIE)

All rights reserved. No part of this publication may be reproduced or distributed in any form or by any means without written permission of the publisher.

The content of this book reflects the work and thought of the author. Every effort has been made to publish reliable and accurate information herein, but the publisher is not responsible for the validity of the information or for any outcomes resulting from reliance thereon.

Printed in the United States of America. First printing

To My Grandkids Dasha, Zhenya, Stepa, Serafim, and Ksusha

Contents

xiii
xxxiii
xli
xlv
xlix

PA	RT I: I	NTRODU	JCTION TO TISSUE OPTICS	1
1	Optio	cal Prop	erties of Tissues with Strong (Multiple) Scattering	3
	1.1	Propag	ation of Continuous Wave Light in Tissues	3
		1.1.1	Basic principles and major scatterers and absorbers	3
		1.1.2	Theoretical description	11
		1.1.3	Monte Carlo simulation techniques	18
	1.2	Short F	Pulse Propagation in Tissues	25
		1.2.1	Basic principles and theoretical background	25
		1.2.2	Techniques for time-resolved spectroscopy and imaging	28
		1.2.3	Coherent backscattering	30
	1.3	Diffuse	Photon-Density Waves	31
		1.3.1	Basic principles and theoretical background	31
		1.3.2	Principles of FD spectroscopy and imaging of tissues	34
	1.4	Spatial	ly Modulated Light Propagation in Tissues	37
		1.4.1	Introduction	37
		1.4.2	Theory and measurement of diffuse light spatial	
			frequency spectrum	39
		1.4.3	Spatially modulated spectroscopy and imaging of tissues	47
	1.5	Conclu	sion	53
2	Prop	agation	of Polarized Light in Tissues	55
	2.1	Introdu	ction	55
	2.2	Tissue	Structure and Anisotropy	56
	2.3	Light S	cattering by a Particle	60
	2.4	Descrip	otion and Detection of Polarized Light	61

	2.5	Light Int	eraction with a Random Single-Scattering Media	64
	2.6	Vector F	Radiative Transfer Equation	68
	2.7	Monte C	Carlo Simulation	71
	2.8	Strongly	/ Scattering Tissues and Phantoms	80
3	Discr	ete Parti	cle Models of Tissue	89
	3.1	Introduc	stion	89
	3.2	Refracti	ve-Index Variations of Tissue	90
	3.3	Particle	Size Distributions	91
	3.4	Spatial	Ordering of Particles	93
	3.5	Scatteri	ng by Densely Packed Particle Systems	94
	3.6	Optical	Properties of Eye Tissues	100
		3.6.1	Optical models	100
		3.6.2	Spectral characteristics	118
		3.6.3	Polarization properties	130
4	Opto	thermal,	Optoacoustic, and Acousto-Optic Interactions of Light	
	with	Tissues		137
	4.1	Basic P	rinciples and Classification	137
	4.2	OA/PA (Gas Cell Technique	141
	4.3	Modulat	ted (Phase) OA/PA Technique	142
	4.4	Pulsed	OA/PA	144
	4.5	Ground	s of OA/PA Tomography and Microscopy	146
	4.6	Optothe	ermal Radiometry	155
	4.7	Optothe	rmal Spectroscopy and Imaging	161
	4.8	Acousto	o-Optical Interactions	174
	4.9	Therma	I Effects	180
	4.10	Sonolur	ninescence	182
	4.11	Prospec	tive Applications and Measuring Techniques	184
		4.11.1	Vascular imaging	184
		4.11.2	Glucose monitoring	184
		4.11.3	Quantification of total hemoglobin and blood oxygenation	186
		4.11.4	Temperature measurement and monitoring of	
			temperature effects	187
		4.11.5	In vivo cytometry and imaging of sentinel lymph nodes	193
		4.11.6	OA/PA sensors and systems	197
	4.12	Conclus	sion	202
5	Fluor	rescence	and Inelastic Light Scattering	205
	5.1	Fluores	cence	205
	5.2	Multipho	oton Fluorescence	217
	5.3	Vibratio	nal and Raman Spectroscopies	225
6	Tissu	e Phante	oms	231
	6.1	Introduc	stion	231

	6.2	Concepts of Phantom Construction	232
	6.3	Examples of Designed Tissue Phantoms	235
	6.4	Examples of Whole Organ Models	242
	6.5	Summary	242
7	Meth	ods and Algorithms for Measurement of the Optical Parameters	
	of Tis	sues	245
	7.1	Basic Principles	245
	7.2	Integrating Sphere Technique	295
	7.3	Multiflux Models	296
	7.4	Inverse Adding-Doubling Method	298
	7.5	Inverse Monte Carlo Method	301
	7.6	Spatially Resolved Techniques	304
	7.7	Optical Coherence Tomography	309
	7.8	Direct Measurement of the Scattering Phase Function	311
	7.9	Estimates of the Optical Properties of Tissues	312
	7.10	Determination of Optical Properties of Blood	316
	7.11	Measurements of Tissue Penetration Depth and Light Dosimetry	324
	7.12	Refractive Index Measurements	327
8	Cohe	rent Effects at the Interaction of Laser Radiation with Tissues	
	and C	Cell Flows	359
	8.1	Formation of Speckle Structures	359
	8.2	Interference of Speckle Fields	367
	8.3	Propagation of Spatially Modulated Laser Beams in a Scattering	
		Medium	368
	8.4	Dynamic Light Scattering	371
		8.4.1 Quasi-elastic light scattering	371
		8.4.2 Dynamic speckles	372
		8.4.3 Full-field speckle technique: LASCA	375
		8.4.4 Diffusion wave spectroscopy	379
	8.5	Confocal Microscopy	383
	8.6	Optical Coherence Tomography	387
	8.7	Digital Holographic and Interferential Microscopy	394
	8.8	Second Harmonic Generation and Nonlinear Raman Scattering	404
	8.9	Ierahertz Spectroscopy and Imaging	409
9	Cont	olling Optical Properties of Tissues	419
	9.1	Fundamentals of Controlling Optical Properties of Tissue and Brief	
		Review	419
	9.2	Tissue Optical Immersion by Exogenous Chemical Agents	425
		9.2.1 Principles of optical immersion technique	425
		9.2.2 Water transport	430
		9.2.3 Tissue swelling and hydration	431
	9.3	Optical Clearing of Fibrous Tissues	433

	9.3.1	Spectral properties of immersed sclera	433
	9.3.2	Scleral in vitro frequency-domain measurements	448
	9.3.3	Scleral in vivo measurements	450
	9.3.4	OCT monitoring of OCA and drug delivery in eye sclera	
		and cornea	453
	9.3.5	Dura mater immersion and agent diffusion rate	457
9.4	Skin		459
	9.4.1	Introduction	459
	9.4.2	In vitro spectral measurements	461
	9.4.3	In vivo spectral reflectance measurements	468
	9.4.4	In vivo frequency-domain measurements	473
	9.4.5	OCT imaging	475
	9.4.6	OCA delivery, skin permeation, and reservoir function	480
9.5	Optical	Clearing of Digestive Tract Tissue	488
	9.5.1	Spectral measurements	488
	9.5.2	OCT imaging	489
9.6	Optical	Clearing of Other Tissues	491
	9.6.1	Muscle	491
	9.6.2	Breast and lung	496
	9.6.3	Cranial bone	498
	9.6.4	Tooth dentin	502
9.7	Other P	Prospective Optical Techniques	506
	9.7.1	Polarization measurements	506
	9.7.2	Confocal microscopy	509
	9.7.3	Fluorescence detection	513
	9.7.4	Two-photon scanning fluorescence microscopy	515
	9.7.5	Second harmonic generation	518
	9.7.6	Vibrational, Raman, and CARS spectroscopy	521
	9.7.7	Tissue clearing in the terahertz range	522
9.8	9.8 Imaging of Cells and Cell Flows		523
	9.8.1	Blood flow imaging	523
	9.8.2	Optical clearing of blood	527
	9.8.3	Cell studies	543
	9.8.4	"Self-clearing" or metabolic clearing effects	548
9.9	Applica	tions of the Tissue Immersion Technique	549
	9.9.1	Glucose sensing	549
	9.9.2	Characterization of atherosclerotic vascular tissues	558
	9.9.3	Optical imaging of lymph nodes	559
	9.9.4	Precision femtosecond laser surgery	560
	9.9.5	Skin tattoo imaging and laser removal	563
9.10	Other T	echniques for Controlling Tissue Optical Properties	573
	9.10.1	Tissue compression and stretching	573
	9.10.2	Temperature effects and tissue coagulation	584
	9.10.3	Tissue whitening	588
9.11	Conclusion 589		589

PART II LIGHT-SCATTERING METHODS AND INSTRUMENTS FOR MEDICAL DIAGNOSIS

10	Continuous Wave Spectrophotometry and Imaging		
	10.1	Techniques and Instruments for in vivo Spectroscopy and Imaging	
		of Tissues	593
	10.2	Example of the Spectroscopic System	597
	10.3	Example of the Imaging System	598
	10.4	Light Scattering Spectroscopy	599

COLOR PLATE SECTION

11	Time	Resolved and Spatially Modulated Spectroscopy and	
	Tomo	graphy of Tissues	605
	11.1	Time-Domain Techniques and Instruments	605
	11.2	Frequency-Domain Techniques and Instruments	611
	11.3	Phased-Array Technique	617
	11.4	In vivo Measurements, Detection Limits, and Examples of Clinical	
		Study	621
	11.5	Spatially Modulated Method	628
12	Polar	ization-Sensitive Techniques	635
	12.1	Polarization Imaging	635
		12.1.1 Transillumination polarization technique	635
		12.1.2 Backscattering polarization imaging	636
	12.2	Polarized Reflectance Spectroscopy of Tissues	642
		12.2.1 In-depth polarization spectroscopy	642
		12.2.2 Superficial epithelial layer polarization spectroscopy	646
	12.3	Polarization Microscopy	647
	12.4	Digital Photoelasticity Measurements	654
	12.5	Fluorescence Polarization Measurements	655
	12.6	Conclusion	660
13	Cohe	rence-Domain Methods and Instruments	661
	13.1	Photon-Correlation Spectroscopy of Transparent Tissues	
		and Cell Flows	661
		13.1.1 Introduction	661
		13.1.2 Cataract diagnostics	662
		13.1.3 Blood and lymph flow monitoring in microvessels	665
	13.2	Diffusion-Wave Spectroscopy and Interferometry: Measurement of	
		Blood Microcirculation	670
	13.3	Blood Flow Imaging	675
	13.4	Interferometric and Speckle-Interferometric Methods	
		for the Measurement of Biovibrations	686
	13.5	Optical Speckle Topography and Tomography of Tissues	690

591

	13.6	Methods of Coherent Microscopy 7		700
	13.7	Interfere	ntial Retinometry and Blood Sedimentation Study	706
14	Optic	al Coher	ence Tomography and Heterodyne Imaging	711
	14.1	Optical C	Coherence Tomography	711
		14.1.1	Introduction	711
		14.1.2	Time-domain OCT	711
		14.1.3	Two-wavelength fiber OCT	713
		14.1.4	Ultrahigh-resolution fiber OCT	714
		14.1.5	Frequency-domain OCT	715
		14.1.6	Doppler OCT and blood flow measurements	718
		14.1.7	Polarization sensitive OCT	721
		14.1.8	Phase-sensitive OCT	723
		14.1.9	Optical coherence elastography	723
		14.1.10	Full-field OCT	726
		14.1.11	Optical coherence microscopy	728
		14.1.12	Endoscopic OCT	731
		14.1.13	Speckle OCT	734
		14.1.14	OCT quantitative parametric imaging of attenuation	737
		14.1.15	Combined OCT systems	738
	14.2	Optical H	Heterodyne Imaging	740
	14.3	Summar	у	746
Coi	nclusic	n		749
Ref	ference	es		755
Ind	Index			917

Nomenclature

21	separation between two point light sources formed in the nodal plane
$2R_{\rm a}$	diameter of circular aperture
$A = \log(1/R_{\rm d})$	apparent absorbance
ā	numerical coefficient, depending on the form of the diffusion equation
a	radius of a scatterer (particle), nm or µm
Α	signal amplitude in the frequency-domain measuring technique
A	acoustic amplitude
$A = \langle i \rangle^2$	square of the mean value of the photocurrent (base-
	line of the autocorrelation function)
$A \cong \pi \left[\lambda_{evc} / (2NA) \right]^2$	illuminated area
a'	largest dimension of a nonspherical particle, nm
	or μm
A_0	initial amplitude due to the instrumental response
$A_{\rm ac}$	ac component of the amplitude of the photon-density
	wave
$A_{ m dc}$	dc component of the amplitude of the photon-density
	wave
a _m	more probable scatterer radius, µm
$a_{\rm n}$ and $b_{\rm n}$	Mie coefficients
$A(\mathbf{r})$	describes the optical absorption properties of the
	tissue at r
a_{sph}	radius of spherical particle
a _T	thermal diffusivity of the medium, m ² /s
B_{d}	detection bandwidth
b _s	accounts for additional irradiation of upper layers of a tissue due to backscattering (photon recycling effect)
С	velocity of light in the medium, cm/s
c_0	velocity of light in vacuum, cm/s

C_1 and C_2	concentrations of molecules in two spaces separated
	by a membrane
$C_{\rm a}(x,t)$	concentration of the agent
C_{a0}	initial concentration of the agent
Cab	concentration of absorber in μ mol, mmol, or mol
Cb	blood specific heat, J/kgK
$C_{\rm Hb}$	hemoglobin concentration
$C_{\rm f}(x,t)$	fluid concentration
CP	specific heat capacity for a constant pressure, J/kgK
$c_{\rm s}$	relative concentration of the scattering centers
$C_{\rm S}$	average concentration of dissolved matter in two interacting solutions
$c_{\rm V}$	specific heat capacity for a constant volume, J/kgK
$C_{\rm n}^{\alpha}$	Gegenbauer polynomials
$\langle C \rangle$	average blood concentration
$\langle C \rangle V_{\rm rms}$	blood flux or perfusion
$D = z\lambda/\pi L_{\varphi}^2$	wave parameter
D	photon diffusion coefficient, cm ² /s
D_{A}	diattenuation (linear dichroism)
D_{a}	agent diffusion coefficient, cm ² /s
D_{B}	coefficient of Brownian diffusion, cm ² /s
D_{f}	fluid coefficient of diffusion, cm ² /s
$D_{\rm media}(\lambda)$	age-related optical density of transparent media of the eye
d	sample (tissue layer or slab) thickness, cm
\mathbf{D}^{-1}	inverse of the measurement matrix
$D_{ }$	dimension of incident light beam along the area where the total radiant energy fluence rate is maximal (determined from the $1/e^2$ level), cm
D_{\perp}	dimension of incident light beam across the area where the total radiant energy fluence rate is maximal (determined from the $1/e^2$ level), cm
$d\Omega'$	unit solid angle about a chosen direction, sr
$d_{\rm av}$	average size of a speckle in the far-field zone
D_{f}	fractal (volumetric) dimension
$D_{\mathrm{I}}, D_{\mathrm{I}}(\Delta \xi)$	structure function of the fluctuation intensity com- ponent
$d_{ m p}$	length of the space where the exciting and the probe laser beams are overlapped, cm
$d_{ m s}$	mean distance between the centers of gravity of the particles
D_{T}	coefficient of translation diffusion
$D_{ m Tf}$	coefficient of translation diffusion for fast process

D_{Ts}	coefficient of translation diffusion for slow process
$D_{ m V}$	diameter of a microvessel
$d\bar{n}/d\lambda$	material dispersion, 1/nm
dn/dT	medium (tissue) refractive index temperature
	gradient, 1/°C
DPF	differential path length factor accounting for the
	increase in photon migration paths attributable to
	scattering
dS	thermoelastic deformation, cm
E	incident pulse energy, J
E	electron charge
E_0	incident laser pulse energy at the sample surface
	(J/cm^2)
$E_{0\mathrm{j}}$	scattering amplitude of an isolated particle, V/m
$E_{\rm ref}(\omega)$	incident THz pulse amplitude
$E_{\text{sample}}(\omega)$	transmitted THz pulse amplitude
$\mathbf{E}_{ i }$	electric field component of the incident light paral-
	lel to the scattering plane, V/m
$\mathbf{E}_{\perp i}$	electric field component of the incident light per-
	pendicular to the scattering plane, V/m
$\mathbf{E}_{ s}$	electric field component of the scattered light paral-
	lel to the scattering plane, V/m
$\mathbf{E}_{\perp s}$	electric field component of the scattered light per-
	pendicular to the scattering plane, V/m
Es	scattered electric field vector, V/m
Es	amplitude of a scattered wave, V/m
E_{T}	absorbed pulse energy, J
E(0)	subsurface irradiance, J/cm ²
F(Hct)	packing function of RBC
$F(\mathbf{r})$	radiant flux density or irradiance, W/cm ²
f(t, t')	describes the temporal deformation of a δ -shaped
	pulse following its single scattering
$f_{1,2}$	volume fractions of tissue components
fa	frequency of acoustic oscillations, Hz
fc	volume fraction of the collagen in tissue
$f_{\rm cp}$	volume fraction of the fluid in the tissue contained inside the cells
$f_{\rm cvl}$	surface fraction of the cylinders' faces
f _D	Doppler frequency
f_{Ds}	Doppler frequency shift
f_{f}	volume fraction of the fibers in the tissue
$f_{ m ge}$	oscillator strength of transition between the ground
-	and excited states

$F_{\rm int}(\theta)$	interference term taking into account the spatial correlation of particles
$f_n = g^n$	<i>n</i> th order moment of the phase function
f_{n}	volume fraction of the nuclei in the tissue contained
J nc	inside the cells
$f_{ m or}$	volume fraction of the organelles in the tissue con-
	tained inside the cells
f_{p}	pulse repetition rate
$f_{\rm r}$	fixed reference (lock-in) frequency
f _{RBCi}	volume fraction of RBCs
f_s	volume fraction of scatterers
f _T	focal length of the thermal lens, cm
$F_{\rm v}$	total volume fraction of the particles
$f_x = (k_x/2\pi), f_y = (k_y/2\pi)$	spatial frequencies
f_{α}	material fringe value
$F(\lambda)$	packing factor of the particles
$FP(\omega)$	reflection of pulses in a parallel plate: Fabry–Perot
	modes
G	domain where radiative transport is examined
G(f)	power spectrum with a Gaussian shape
σ ())	scattering anisotropy factor [mean cosine of the
8	scattering angle θ , $\langle \cos(\theta) \rangle$]
$g_1(\tau)$	first-order autocorrelation function (normalized
	autocorrelation function of the optical field)
$g_2(\Delta\xi)$	normalized autocorrelation function of intensity fluctuations
$G_1(\tau)$	autocorrelation function of the scalar electric field.
	E(t), of the scattered light
$G_2(\tau)$	autocorrelation function of intensity fluctuations
$\tilde{G}_2(\Lambda\xi)$	autocorrelation function of the fluctuation intensity
	component
\tilde{g}_{2}	normalized autocorrelation function of the fluctua-
82	tion intensity component
o(r)	radial distribution function of scattering centers
80)	(local-to-average density ratio for scattering cen-
	ters)
G(r)	hinary density_density_correlation function
	scattering anisotropy factor of dermis
gd g	scattering anisotropy factor of epidermis
Se G	attenuation factor accounting for scattering and
U _S	geometry of the tissue
Gw	gradient of the flow rate
Het	blood hematocrit
H	tissue hydration
11	ussue nyuration

$H(x, y, t) = (\lambda/2\pi\Delta n)\phi(x, y, t)$	dynamic profile of the geometric thickness of the cell
h	Planck's constant
h	apparent energy transfer coefficient
$h(x, y, t) = \int [n(x, y, z, t) - n_0] dz$	two-dimensional distribution of optical path dif- ference
$H(\mathbf{r},\bar{t})$	heating function, defined as the thermal energy per time and volume deposited by the light source in the close proportion to the optical absorption coefficient of interest
Hb	hemoglobin
HbO ₂	oxyhemoglobin
HbR	deoxyhemoglobin
$h\nu$	photon energy
h(x, y)	spatial variations in the thickness of the RPS
$I(\theta)/I(0) \equiv p(\theta)$	normalized scattering indicatrix, 1/sr
$I(\theta)$	scattering indicatrix (angular dependence of the scattered light intensity), W/cm ² sr
$i = (-1)^{1/2}$	imaginary number
$I_{\rm ac}, I_{\rm dc}$	ac and dc components of diffusely reflected intensity
$I_{\rm AS}, I_{\rm S}$	intensity of the anti-Stokes and Stokes Raman lines for a given vibration state
$I_{\rm F}$	fluorescence intensity
I _i	irradiance or intensity of the incident light beam, W/cm ²
$\langle I \rangle$	mean value of the intensity fluctuations
	rms of photodetector heterodyning signal of the OCT system, obtained from probing depth z
Ι	refers to the irradiance or intensity of the light, W/cm ²
<i>I</i> (r , s)	radiance (or the specific intensity) of average power flux density at point \mathbf{r} in given direc- tion \mathbf{s} , W/cm ² sr
$I(\mathbf{r}, \mathbf{s}, t)$	time-dependent radiance (or specific intensity), W/cm ² sr
I(0)	intensity at the center of the beam
I(d)	intensity of light transmitted by a sample of thickness d measured by using a distant photodetector with a small aperture (online or collimated transmitteness) $W(cm^2)$
LO LL and V	Stalaa nonomotore
I, Q, U, and V	Stokes parameters

$I_{\rm H}, I_{\rm V}, I_{+45^\circ}, I_{-45^\circ}, I_{\rm R},$	light intensities measured with a horizontal linear
and $I_{\rm L}$	polarizer, a vertical linear polarizer, a +45 deg lin-
	ear polarizer, a -45 deg linear polarizer, a right
	circular analyzer, and a left circular analyzer in
	front of the detector, respectively
$I_{\rm in}(\eta_{\rm c})$	incident radiance angular distribution
$I_{\Sigma}(\theta)$	angular distribution of the scattered intensity of a
	system of N particles
$I_{\Sigma}(x, y)$	intensity of light transmitted by an RPS
$I_{ }$ and I_{\perp}	intensities of the transmitted (scattered) light polar-
	ized in parallel or perpendicular to linear polar-
	ization of the incident light, respectively
$I(\theta)$	angular distribution of the scattered light by a parti-
	cle, W/cm ² sr
$I(2\omega)$	SHG signal intensity
$I_0(\lambda)$	spectrum of the incident light
I_0	incident light intensity, W/cm ²
Ib	intensity of the uniform background light
$I_{\rm c}(x,y)$	intensity of light transmitted in the forward direc-
	tion (the specular component)
$I_{\rm F }$ and $I_{\rm F\perp}$	fluorescence intensities of light polarized in paral-
	lel or perpendicular to the exciting electric field
	vector
$\hat{I}_{2\mathrm{f}}(t)$	TPEF instant intensity collected by the optical sys-
	tem
$\langle \hat{I}_{2f} \rangle$	time-averaged over any period of time T, the TPEF
$\sqrt{2}/CW$	intensity per a single molecule at CW laser exci-
	tation
$I_{\rm HP}(x, y, z_0)$	intensity distribution in the hologram plane (HP)
I_{par} and I_{per}	intensity images for light polarized in parallel or
har her	perpendicular to linear polarization of the inci-
	dent light, respectively
$I_{\rm r}(r)$ and $I_{\rm s}(r)$	intensity distributions of the reference and signal
	fields, respectively
$I_{\rm R}$ and $I_{\rm S}$	intensity distributions of the reference and object
	fields, respectively
I_{rest} and I_{test}	light intensity detected when an object is at rest
	(brain tissue or skeletal muscle) or test (induced
	brain activity, cold or visual test, or training)
$I_{\rm s}(x, y)$	intensity of the scattered component
I _{sp}	mean intensity of speckles
$\langle I_{x,y} \rangle$	mean value of CCD intensity counts at pixel (x, y)
~	over <i>n</i> frames
J	flux of matter, mol/s/cm ²

J_0	zero-order Bessel function
J_1	first-order Bessel function
J_{S}	dissolved matter flux
$J_{ m W}$	water flux
$k = 2\pi/\lambda$	wavenumber
ka	acoustic wave vector
k _{ET}	rate constant of nonradiative energy transfer to adja- cent molecules
$k_{ m F}$	rate constant of the fluorescence transition to ground state S_0 (including its vibrational states)
Κ	image contrast
<i>K</i> , <i>S</i>	Kubelka–Munk parameters
$K_{\varphi}(\Delta x)$	correlation coefficient of phase fluctuations of the boundary field
k _B	Boltzmann constant
k _{bvo}	modification factor for reducing the crosstalk between changes in blood volume and oxygena- tion
k _G	gas heat conductivity, W/K
$k_{i}(\omega)$	imaginary part of the photon-density wave vector, 1/cm
k _{IC}	rate constant of internal conversion to ground state S_0
$k_{\rm ISC}$	rate constant of intersystem crossing from singlet to triplet state T_1
$k_{\rm r}(\omega)$	real part of the photon-density wave vector, 1/cm
k_{T}	heat conductivity, W/K
$K_{\mathrm{t}}(x, y)$	temporal contrast of intensity fluctuations of laser scattered light at pixel (x, y)
l	thickness of a thin membrane
L	total mean path length of a photon, cm
L	tissue slab thickness, cm
$L = D\lambda/2l$	period of interferential fringes (<i>D</i> is the mean dis- tance between eye nodal plane and retina)
L _D	phenomenological coefficient characterizing the interchange flux induced by osmotic pressure
L_{Φ}	correlation length of the phase fluctuations of the scattered field
l_0	amplitude of longitudinal harmonic vibrations
L _c	correlation length of the inhomogeneities (random relief)
l _c	coherence length of a light source
$l_{\rm d} = \mu_{\rm eff}^{-1}$	diffusion length, cm
le	depth of light penetration into a tissue

Lp	phenomenological coefficient indicating that volu- metric flux can be induced by increasing hydro-
I	static pressure
$L_{\rm pd}$	hand the volumetric flux that can be induced
	fan a manhana ha constitution and an the
	for a membrane by osmotic pressure, and on the
	other, the efficiency of the separation of water
-1	molecules and dissolved matter
$l_{\rm ph} = \mu_{\rm t}^{-1}$	photon mean free path, cm
$l_{\rm s} = \mu_{\rm s}^{-1}$	scattering length, cm
l _T	length of thermal diffusivity (thermal length), cm
$l_{\rm tr} = (\mu_{\rm s}' + \mu_{\rm a})^{-1}$	photon transport mean free path (MFP), cm
M	molecular weight
M	optical magnification
$m \equiv n_{\rm s}/n_0$	relative refractive index of the scatterers
$M = I_1 / I_0$	intensity modulation depth, defined as the ratio
	between the intensity at the fundamental fre-
	quency, I_1 , and the unmodulated intensity, I_0
Μ	normalized 4×4 scattering matrix (intensity or
	Mueller's matrix) (LSM)
M_0	zero moment of the power density spectrum, $S(\nu)$,
	of the intensity fluctuations
M_1	first moment of the power density spectrum, $S(v)$,
	of the intensity fluctuations
$M_{\rm ac}(x, f_{\rm x})$	amplitude envelope of the reflected photon density
	standing wave at frequency f_x
$M_{\rm dc}(x)$	spatially varying dc amplitude
m_{I}	intensity modulation depth of the incident light
M_{ij}	LSM elements, $i, j = 1 - 4$, 16 elements
\overline{M}_{ij}	LSM element normalized to the first element
M_{ij}^{0}	LSM elements of an isolated particle
m _{RBC}	relative index of refraction of RBC
M _q	mass of the charge of the molecule capable
1	for oscillations at its own frequency at light
	excitation
m _t	amount of dissolved matter at moment t
m_{∞}	amount of dissolved matter at the equilibrium state
$m_{\rm U} \equiv {\rm ac}_{\rm detector}/{\rm dc}_{\rm detector}$	modulation depth of scattered light intensity
n	relative mean refractive index of tissue and sur-
	rounding media
$n(\omega) = n'(\omega) - i \cdot n''(\omega)$	complex refractive index
$n'(\omega)$	real part of index of refraction
$n''(\omega) = \alpha(\omega) \cdot c / \omega$	imaginary part of index of refraction
\overline{n}	mean refractive index of the scattering medium
	renden e moen er tie seattering medium

Ν	number of scatterers (particles)
$N = \theta/2\pi$	fringe order (θ is the optical phase)
N_0	number of scatterers in a unit volume
$N_1(z) = z \cdot \mu_s^{\text{ex}}$	average number of scattering events experienced by
-	excitation light before it reaches the fluorophore
	(<i>z</i> is the distance of fluorophore location)
$N_2(z) = z \cdot \mu_s^{em}$	average number of scattering events experienced by
- 5	the emitted light before it exits the medium (z is
	the distance of fluorophore location)
\bar{N}	outside vector normal to ∂G
$n_{2\mathrm{f}}$	rate of two-photon excitation
n_0	refractive index of ground matter
\bar{n}_0	average background index of refraction
n _c	refractive index of collagen fibers
n _{cp}	refractive index of cytoplasm
n _e	extraordinary refractive index
$n_{ m f}$	refractive index of tissue fibers (collagen and
	elastin)
n _{g0}	refractive index of the ground material of a tissue
\bar{n}_{g1}	effective (mean) group refractive index of a tissue
n _{g2}	group refractive index of the homogeneous refer-
	ence medium (air)
n _g	group refractive index
$n_{ m gs}$	group refractive index of scatterers
n _{H2O}	refractive index of water
$N_{\rm i} = f_{\rm RBCi} / V_{\rm RBCi}$	number of RBCs in a unit volume of blood
$N_{\rm int} = [\arcsin(\lambda/2l)]^{-1}$	density of interferential fringes per degree of the
	view angle (angular resolving power of the eye
	or retinal visual acuity)
$n_{ m is}$	refractive index of the ISF
$n_{ m nc}$	refractive index of cell nucleus
n _o	ordinary refractive index
<i>n</i> _{or}	refractive index of cell organelles
Np	number of particle diameters
n _s	refractive index of scattering centers (particles)
n _s	refractive index of a scattering particle, determined
	by averaging refractive indices of tissue compo- nents
$\bar{n}_{\rm sc}$	average refractive index of eye sclera
N _{sp}	number of speckles within the receiving aperture
NĂ	numerical aperture of the objective or fiber
n(x, y)	spatial variations in the refractive index of the
-	random phase screen
$\bar{n}_{ m t}$	average refractive index of the tissue

$O(x, y, z = z_0)$	object wave
OD	optical density
osm	osmolarity
р	packing dimension
p	porosity coefficient
P	laser beam power, W
Р	induced polarization
P(t)	instantaneous power of the radiation within illumi- nated area A
P_{a}	coefficient of permeability
$P_{\text{ave}} = (\tau_{\text{p}} \cdot f_{\text{p}})P_{\text{peak}}$	average power
P_0	average incident power, W
$P_C = V/I = [O^2 + U^2]^{1/2}/I$	degree of circular polarization
$P_{\rm FL} = (I_{\rm F11} - I_{\rm F1})/$	degree of linear polarization of fluorescence
$(I_{\text{FII}} + I_{\text{FI}})$	
$P_{\rm L} = (I_{ } - I_{\perp})/(I_{ } + I_{\perp})$	degree of linear polarization
$P_{\rm L}^{\rm r}(\lambda)$	residual polarization degree spectra
P_{\min}	minimal detectable signal power
p(I)	intensity probability density distribution function
p(s)	distribution function of photon migration paths in
1 ()	the medium
$p(\mathbf{s}, \mathbf{s}') = p(\theta)$	scattering phase function (probability density func- tion for scattering in the direction, s' , of a photon travelling in direction s), 1/sr
$p_{\rm GK}(\theta)$	Gegenbauer kernel phase function (GKPF)
$p_{\rm HG}(\theta)$	Henyey–Greenstein phase function (HGPF)
P _{peak}	peak power
$P_{\rm R}$ and $P_{\rm S}$	powers of the reference and object beams of OCT interferometer
PI	polarization degree image
$P_{\rm n}^1(\cos\theta)$	Legendre polynomials
$p(\Delta L)$	probability density distribution function of relief variations
$p(\mathbf{r}, \overline{t})$	acoustic wave
$P^{(3)}$	third-order polarization
pix	pixel size
q	charge of molecule capable of oscillations at its own frequency at light excitation
q	spatial modulation frequency of fringes
q	scattering vector
q	value of scattering vector
$q(\mathbf{r})$	source function (i.e., number of photons injected
-	into the unit volume)

Q, U, and V	the extents of horizontal linear, 45 deg linear, and circular polarization, respectively
Q_{a}	asymmetry parameter of intensity fluctuations
q _b	blood perfusion rate (1/s), defined as the vol- ume of blood flowing through unit volume of tissue in one second
$Q_{\rm s}, Q_{\rm s}(a_{\rm sph}, n_{\rm s}, n_{\rm I})$	factor of scattering efficiency
$R(x, y, z = z_0)$	reference wave
r	transverse spatial coordinate
$r = \frac{I_{\parallel} - I_{\perp}}{I_{\parallel} + 2I_{\perp}}$	polarization anisotropy
$r_{\rm F} = (I_{\rm F } - I_{\rm F\perp})/(I_{\rm F } + 2 I_{\rm F\perp})$	fluorescence polarization anisotropy
$\mathbf{R}(\mathbf{\phi})$	Stokes rotation matrix for angle ϕ
r	radius vector of a scatterer or a given point at which the radiance is evaluated, cm
R	radius of membrane (of a cell or tumor necrotic core)
R(z)	backscattering or reflectance in OCT
$r_{\perp }(\tau)$	cross-correlation function (correlation coeffi-
$P_{\mathcal{A}}(\lambda)$ and $P_{\mathcal{A}}(\lambda)$	reflectance spectra at parallel and perpendicu
$K_{\parallel}(\Lambda)$ and $K_{\perp}(\Lambda)$	lar orientations of polarization filters
Â	reflection operator
R	4×1 response vector corresponding to the four retarder/analyzer settings
R _a	reflectance from the backward surface of the sample impregnated by an agent
$R_{\theta}(\lambda)$	spectrum of light scattered under the angle $(\theta + d\theta)$
r_0	radius of the incident light beam, cm
R _{bd}	distance between the axis of exciting laser beam and the acoustic detector, cm
R _d	diffuse reflectance
$R_{\rm d}(k)$	diffuse reflectance of spatially modulated
$D = [(1)/(1)]^2$	photon density waves
$R_{\rm F} = [(n-1)/(n+1)]^2$	coefficient of Fresnel reflection
R _G	gas cell radius, cm
r _h	hydrodynamic radius of a particle
R _o	dimension (radius for a cylinder form) of a
	bio-object, cm
r _p	radius of the pinnole
r _{RBC}	radius of KBC
r _s	radius of the scattered beam in the observation plane

R _s	reflectance from the backward surface of the control sample
r ,	distance between light source and detector at the
/ sd	tissue surface (source_detector separation) cm
R(n' n)	reflection redistribution function
$\tilde{\mathbf{R}}$ (\mathbf{r}, \mathbf{r})	complex reflection coefficient (n nelegization)
$R_{\rm p}(\omega)$	complex reflection coefficient (<i>p</i> -polarization)
$RL(\omega)$	reflection losses at the boundaries of the sample
$RI \Delta C_S$	osmotic pressure
S	total photon path length (or mean path length of a photon)
S	hemoglobin oxygen saturation
S	heat source term, W/m ³
S	sample area
S _D	surface of detection
S	Stokes vector
S _s	Stokes vector of the scattered light
\mathbf{S}_{i}	Stokes vector of the incident light
\mathbf{s} and \mathbf{s}'	directions of photon travel or unit vectors for inci- dent and scattered waves
$ s = 2k\sin(\theta/2)$	magnitude of the scattering wave vector, $k = 2\pi \bar{n}/\lambda_0$
\mathbf{S}_0	unit vector of the direction of the incident wave
\mathbf{S}_1	unit vector of the direction of the scattered wave
$S(\mathbf{r},\mathbf{s})$	incident light distribution at ∂G
S(f)	power spectrum of intensity fluctuations of the speckle field
S(q)	structure factor
$S_3(\theta)$	3D structure factor
$S_2(\theta)$	2D structure factor
$S(\omega)$	spectrum of intensity fluctuations
S_{1-4}	elements of the amplitude scattering matrix (S-matrix) or Jones matrix
$S_{\rm r}(t)$	surface radiometric signal
$S(\bar{t})$	describes the shape of the irradiating pulse
sO ₂ or SO ₂	hemoglobin saturation with oxygen
Т	absolute temperature
Т	exposure time, s
$T(\mathbf{r})$	change in tissue temperature at point r
$T(\eta'_c, \eta_c)$	transmission redistribution function
$T(\omega)$	transmission spectrum on terahertz
$T_0(\omega)$	medium transmission spectrum through which the THz pulse is travelling
t	time, s
t_0	spatially independent amplitude transmission of the RPS

t_1	first moment of the distribution function, $f(t, t')$;
4 1/(time interval of an individual scattering act, s
$t_2 = 1/(\mu_t c)$	average interval between interactions, s
I _a	acoustic wave period
I _a	arterial blood temperature, K
$t_{\rm b}$	blood temperature
$T_{\rm c}(\lambda)$	collimated transmission spectrum
T _c	collimated transmittance
$T_{\rm d}$	diffuse transmittance
$T_{\rm s}$ and $T_{\rm e}$	temperature of the tissue surface and environment, respectively
$t_{\rm s}(x,y)$	amplitude transmission coefficient of an RPS
$T_{\rm t} = T_{\rm c} + T_{\rm d}$	total transmittance
$T_{t}(\lambda)$	total transmission spectrum
$T_{\theta}(\lambda)$	transmission spectrum when a measuring system
	with a finite angle of view is used (collimated light
	beam with the addition of a forward-scattered
	light in the angle range 0 to θ is detected)
$U(\mathbf{r})$	total radiant energy fluence rate, W/cm ²
$\langle U \rangle$	averaged amplitude of the output signal of the
	homodyne interferometer
U _m	maximum of the total radiant energy fluence rate, W/cm ²
V	illuminated volume
V	volume of the tissue sample
$V(t) = \int H(x, y, t) dx dy$	momentary volume of the cell
v	velocity of motion of the object with respect to the
	light beam
V _C	volume of collagen fibers
Ve	volume of an erythrocyte
V_F	flow velocity
V _M	molecular volume
V _{sh}	shear rate
$\overline{V}(z)$	contrast of average intensity fringes
VΦ	phase velocity of a photon-density wave, cm/s
V ₀	contrast of the interference pattern in the initial laser
0	beam
V _a	velocity of acoustic waves in a medium, m/s
V I	contrast of the intensity nuctuations
<i>v_p</i>	confocal microscopic system
$V_{\rm P}$	contrast of the polarization image
V _{RBC}	RBC volume, μm^3
V _{rms}	root-mean-square speed of moving particles

Vs	velocity of a moving particle
\bar{V}_{S}	partial mole volumes of dissolved matter
$v_{\rm sh}$	shear rate
$V_{\rm V}$	parameter directly proportional to the flow velocity
$\bar{V}_{ m W}$	partial mole volumes of water
W	laser (Gaussian) beam radius (or radius of a cylinder illuminated by a laser beam), cm
WH	radius of the beam at 1/ <i>e</i> , at a probing depth of OCT in the absence of scattering, cm
wp	probing laser beam radius, cm
w_0	radius of the Gaussian beam waist, cm
x^0	fixed point at the plane where speckles are observed
$x = 2\pi a / \lambda$	size (diffraction) parameter z linear coordinate (depth inside the medium), cm
Z	normalized phase matrix
$z_0 = (\mu'_s)^{-1}$	transport scattering length, cm
Greek	
$\alpha(z)$	reflectivity of the sample at depth of z
$\alpha(\omega)$	absorption coefficient on terahertz
α _{нь}	spectrally dependent coefficient of the proportional-
	ity of hemoglobin imaginary refractive index on its concentration
α_{i}	incidence angle of the beam, angular degrees
0	$a = \frac{1}{V}$
p o	modulation donth of photoelectric signal of the
þ	interferometer
β	factor that accounts for the conversion of optical power to the photodetector current
$\langle \beta \rangle$	orientation averaged first molecular hyperpolariz- ability
β_{sb}	parameter of self-beating efficiency
Г	Grüneisen parameter (dimensionless, temperature- dependent factor proportional to the fraction of thermal energy converted into mechanical stress)
$\Gamma_{\rm eff}$	effective shear rate
$\Gamma_{\rm T}$	relaxation parameter
$\gamma = c_{\rm P}/c_{\rm V}$	ratio of specific heat capacities
$\gamma_{11}(\Delta t)$	degree of temporal coherence of light
$\Delta \psi$	phase shift in a measuring interferometer, degrees
Δa	half-width of the radii distribution
$\Delta E_{\rm vib} = h v_{\rm vib}$	energy of the molecular vibration state

ΔF	width of the averaged spectrum
$\Delta \tilde{k}$	wavenumber shift
$\Delta L = \Delta(nh)$	optical length (relief) variations
Δn	difference in refractive indices
$\Delta n = (n_{\text{cell}} - n_0)$	difference between the average refractive index of
	the cell and the environment
$\Delta n_{\rm oe}$	difference in refractive indices due to birefringence of form
Δp	change of pressure, Pa
Δp	hydrostatic pressure, Pa
$\Delta R^{r}(\lambda)$	differential residual polarization spectra
ΔV	change of illuminated volume caused by local tem-
	perature increase, m ³
Δw	change of radius of a cylinder illuminated by a laser
	beam caused by local temperature increase, cm
Δx	linear shift of the center of maximal diffuse reflec-
	tion, cm
Δz	longitudinal displacement of the object
ΔT	local temperature increase, °C
ΔT	optical clearing (enhancement of transmittance)
Δx_{T}	amplitude of mechanical oscillations, cm
$<\Delta n>$	mean refractive index variation
$\Delta \Phi$	phase shift relative to the incident light modulation
	phase (phase lag), degrees
$\Delta \Phi_0$	initial phase due to the instrumental response
$\Delta \phi_{HP} \left(x, y, z_0 \right) =$	phase difference between waves O and R in plane
$\Phi_R(x, y, z_0) - \Phi_O(x, y, z_0)$	$z = z_0$
$\Delta \theta$	angular width of the coherent peak in backscatter,
	angular degrees
$\Delta\lambda$	bandwidth of a light source
Δξ	change in variable
$\Delta \Psi_{\rm I}(r)$	deterministic phase difference of the interfering waves
$\Delta \Phi_{\rm I}(r)$	random phase difference
$\Delta \Phi_{\rm I}(r)$	time-dependent phase difference related to the motion of an object
$\Delta \varphi_s(x, y, z_0)$	phase change attributable to the object
$<\Delta r^2(\tau)>$	mean-square displacement of a particle within time
	interval τ
$\Delta T_{\rm S}$	temperature change of a sample, °C
$\Delta T_{ m G}$	temperature change of a surrounding gas, $^{\circ}C$
Δt	time shift of the transmitted pulse peak
$\langle \Delta V^2 \rangle$	second moment of the particle velocity distribution
	(mean square velocity)

$\delta = 2\pi d\Delta n / \lambda_0$	phase delay (retardance) of optical field
δ	penetration depth of the field into tissue or fluid
$\delta_{\rm CCD} = pix/M$	resolution of CCD camera
$\delta_{\rm F} = V_{\rm F} \tau_{\rm L}$	motion distortion due to cell displacement during
	the exposure or the time between the two probe
	pulses
δ_n and δ_d	parameters related to the average contributions per
	photon free path and scattering event, respec-
	tively, to the ultrasonic modulation of light inten-
	sity
$\delta_{\rm oe} = 2\pi \ d\Delta n_{\rm oe} / \lambda_0$	phase delay of optical field due to birefringence
$\delta_{\text{OPT}} = 0.61\lambda/\text{NA}$	optical resolution of the microscope objective
δ_{PT}	image resolution
$\delta_{\rm T} \equiv l_{\rm T} = (4a_{\rm T}\tau_{\rm L})^{1/2}$	thermal resolution
$\delta p(\omega)$	amplitude of harmonically modulated pressure, Pa
$\delta p(t)$	time-dependent change of pressure, Pa
∂G	boundary surface of domain G
$\partial n/\partial p$	adiabatic piezo-optical coefficient of the tissue
$\Delta z_{ m opt}$	optical path length
$\epsilon(\omega)$	dielectric function (permittivity)
ϵ_0	low-frequency permittivity
ϵ_{ab}	absorption coefficient, measured in $mol^{-1} cm^{-1}$
ε^d_λ	extinction coefficient of deoxyhemoglobin, measured in $mol^{-1} cm^{-1}$
$\varepsilon^{\mathrm{o}}_{\lambda}$	extinction coefficient of oxyhemoglobin, measured in mol^{-1} cm ⁻¹
ϵ_{λ}	extinction coefficient at wavelength λ , in mol ⁻¹ cm ⁻¹
$\varepsilon_{\text{HbO}_2}(\lambda_i)$ and $\varepsilon_{\text{HbR}}(\lambda_i)$	molar extinction coefficients of oxyhemoglobin and
	deoxyhemoglobin, respectively
$\Phi(x)$	spatially modulated phase due to the object
$\phi_{O_0}(x, y, z_0)$	phase of the object wave itself
η	absolute viscosity of the medium
$\eta(a) \text{ or } \eta(2a)$	radii (a) or diameter (2a) distribution function of scatterers
η _c	cosine of the polar angle
$\eta_F, \eta = \eta(\lambda_{em})$	fluorescence quantum yield
η _a	quantum efficiency of the detector
$\eta'(2a)$	correlation-corrected distribution $\eta(2a)$
θ	scattering angle, angular degrees
$\theta_{\rm I}$	angle between the wave vectors of the interfering fields
$\theta_{\rm rnd}^{\rm GK}$	GKPF random scattering angle
θ_{rnd}^{HG}	HGPF random scattering angle

К	coefficient taking into account the collection effi- ciency of the fluorescent photons
$\Lambda = \frac{\sigma_{sca}}{\sigma_{sca}} = \frac{\mu_s}{\sigma_s}$	albedo for single scattering (characterizes the rela-
σ_{ext} μ_t	tion of scattering and absorption properties of a tissue)
$\Lambda' = \frac{\mu'_s}{1-\mu'_s}$	transport albedo
$\mu_a + \mu'_s$	nhoton-density wavelength cm
$\Lambda_{\rm I}$	spacing of interference fringes
$\lambda = \lambda_0 / \bar{n}$	wavelength in the scattering medium, nm
λο	wavelength of the light in vacuum, nm
$\lambda_{1\mathrm{f}}$	wavelength necessary to excite the fluorescence at single-photon absorption
$\lambda_2\cong 2\lambda_{\rm 1f}$	wavelength necessary to excite the fluorescence at two-photon absorption
λ_{exc} and λ_{em}	wavelengths of excitation and emission, respec-
	tively
$\Lambda_{\rm p}$	wavelength of the probe beam, nm
μ_a	sion wavelength, 1/cm
μ_{a}	absorption coefficient, 1/cm
μ_b	volume-averaged backscattering coefficient, 1/cm sr
$\mu_{\rm eff} = [3\mu_a(\mu'_s + \mu_a)]^{1/2}$	effective attenuation coefficient or inverse diffusion
	length, 1/cm
$\mu_{\rm eff}' = \sqrt{\mu_{\rm eff}^2 + k_x^2 + k_y^2}$	length, 1/cm scalar attenuation coefficient of spatially modulated photon density waves
$\mu'_{\rm eff} = \sqrt{\mu_{eff}^2 + k_x^2 + k_y^2}$ $\mu_{\rm ge}$	length, 1/cm scalar attenuation coefficient of spatially modulated photon density waves change in dipole moment between ground and excited states
$\mu'_{eff} = \sqrt{\mu_{eff}^2 + k_x^2 + k_y^2}$ μ_{ge} μ_n	length, 1/cm scalar attenuation coefficient of spatially modulated photon density waves change in dipole moment between ground and excited states <i>n</i> -order statistical moment ($n = 1, 2, 3,,$)
$\mu'_{eff} = \sqrt{\mu_{eff}^2 + k_x^2 + k_y^2}$ μ_{ge} μ_n $\mu'_s = (1 - g)\mu_s$	<pre>length, 1/cm scalar attenuation coefficient of spatially modulated photon density waves change in dipole moment between ground and excited states n-order statistical moment (n = 1,2,3,,) reduced (transport) scattering coefficient, 1/cm</pre>
$\mu'_{eff} = \sqrt{\mu_{eff}^2 + k_x^2 + k_y^2}$ μ_{ge} μ_n $\mu'_s = (1-g)\mu_s$ μ_s	length, 1/cm scalar attenuation coefficient of spatially modulated photon density waves change in dipole moment between ground and excited states <i>n</i> -order statistical moment ($n = 1, 2, 3,,$) reduced (transport) scattering coefficient, 1/cm scattering coefficient, 1/cm
$\mu'_{eff} = \sqrt{\mu_{eff}^2 + k_x^2 + k_y^2}$ μ_{ge} μ_n $\mu'_s = (1-g)\mu_s$ μ_s μ	length, 1/cm scalar attenuation coefficient of spatially modulated photon density waves change in dipole moment between ground and excited states <i>n</i> -order statistical moment ($n = 1, 2, 3,,$) reduced (transport) scattering coefficient, 1/cm scattering coefficient, 1/cm
$\mu'_{eff} = \sqrt{\mu_{eff}^2 + k_x^2 + k_y^2}$ μ_{ge} μ_n $\mu'_s = (1-g)\mu_s$ μ_s μ_s^{ex} μ_s^{em}	length, 1/cm scalar attenuation coefficient of spatially modulated photon density waves change in dipole moment between ground and excited states <i>n</i> -order statistical moment ($n = 1, 2, 3,,$) reduced (transport) scattering coefficient, 1/cm scattering coefficient, 1/cm scattering coefficient of the excitation light, 1/cm
$\mu'_{eff} = \sqrt{\mu_{eff}^2 + k_x^2 + k_y^2}$ μ_{ge} μ_s μ_s μ_s μ_s^{ex} μ_s^{ex} μ_s^{em} $\mu_t = \mu_a + \mu_s$	<pre>length, 1/cm scalar attenuation coefficient of spatially modulated photon density waves change in dipole moment between ground and excited states n-order statistical moment (n = 1,2,3,,) reduced (transport) scattering coefficient, 1/cm scattering coefficient of the excitation light, 1/cm scattering coefficient of the emitting light, 1/cm extinction coefficient (interaction or total attenua- tion coefficient), 1/cm</pre>
$\mu'_{eff} = \sqrt{\mu_{eff}^2 + k_x^2 + k_y^2}$ μ_{ge} μ_n $\mu'_s = (1-g)\mu_s$ μ_s μ_s^{em} μ_s^{em} $\mu_t = \mu_a + \mu_s$ $\mu_{tr} = \mu_a + \mu'_s$	length, 1/cm scalar attenuation coefficient of spatially modulated photon density waves change in dipole moment between ground and excited states <i>n</i> -order statistical moment ($n = 1, 2, 3,,$) reduced (transport) scattering coefficient, 1/cm scattering coefficient, 1/cm scattering coefficient of the excitation light, 1/cm scattering coefficient of the emitting light, 1/cm extinction coefficient (interaction or total attenua- tion coefficient), 1/cm transport coefficient
$\mu'_{eff} = \sqrt{\mu_{eff}^2 + k_x^2 + k_y^2}$ μ_{ge} μ_n $\mu'_s = (1 - g)\mu_s$ μ_s μ_s^{ex} μ_s^{em} $\mu_t = \mu_a + \mu_s$ $\mu_{tr} = \mu_a + \mu'_s$ $ \mu(z) $	length, 1/cm scalar attenuation coefficient of spatially modulated photon density waves change in dipole moment between ground and excited states <i>n</i> -order statistical moment ($n = 1, 2, 3,,$) reduced (transport) scattering coefficient, 1/cm scattering coefficient, 1/cm scattering coefficient of the excitation light, 1/cm scattering coefficient of the emitting light, 1/cm extinction coefficient (interaction or total attenua- tion coefficient), 1/cm transport coefficient modulus of the transverse correlation coefficient of the complex amplitude of the scattered field
$\mu'_{eff} = \sqrt{\mu_{eff}^2 + k_x^2 + k_y^2}$ μ_{ge} μ_n $\mu'_s = (1-g)\mu_s$ μ_s μ_s^{ex} μ_s^{em} $\mu_t = \mu_a + \mu_s$ $\mu_{tr} = \mu_a + \mu'_s$ $ \mu(z) $ ν_I	length, 1/cm scalar attenuation coefficient of spatially modulated photon density waves change in dipole moment between ground and excited states <i>n</i> -order statistical moment ($n = 1, 2, 3,,$) reduced (transport) scattering coefficient, 1/cm scattering coefficient, 1/cm scattering coefficient of the excitation light, 1/cm scattering coefficient of the emitting light, 1/cm extinction coefficient (interaction or total attenua- tion coefficient), 1/cm transport coefficient modulus of the transverse correlation coefficient of the complex amplitude of the scattered field exponential factor of the spatial intensity fluctua- tions
$\mu'_{eff} = \sqrt{\mu_{eff}^2 + k_x^2 + k_y^2}$ μ_{ge} μ_n $\mu'_s = (1-g)\mu_s$ μ_s μ_s^{em} $\mu_t^{em} = \mu_a + \mu_s$ $\mu_{tr} = \mu_a + \mu'_s$ $ \mu(z) $ ν_I $\xi = x \text{ or } t$	length, 1/cm scalar attenuation coefficient of spatially modulated photon density waves change in dipole moment between ground and excited states <i>n</i> -order statistical moment ($n = 1, 2, 3,,$) reduced (transport) scattering coefficient, 1/cm scattering coefficient, 1/cm scattering coefficient of the excitation light, 1/cm scattering coefficient of the emitting light, 1/cm extinction coefficient (interaction or total attenua- tion coefficient), 1/cm transport coefficient modulus of the transverse correlation coefficient of the complex amplitude of the scattered field exponential factor of the spatial intensity fluctua- tions spatial or temporal variable
$\mu'_{eff} = \sqrt{\mu_{eff}^2 + k_x^2 + k_y^2}$ μ_{ge} μ_n $\mu'_s = (1-g)\mu_s$ μ_s μ_s^{ex} μ_s^{em} $\mu_t = \mu_a + \mu_s$ $\mu_{tr} = \mu_a + \mu'_s$ $ \mu(z) $ ν_I $\xi = x \text{ or } t$ ξ_I	length, 1/cm scalar attenuation coefficient of spatially modulated photon density waves change in dipole moment between ground and excited states <i>n</i> -order statistical moment ($n = 1, 2, 3,,$) reduced (transport) scattering coefficient, 1/cm scattering coefficient, 1/cm scattering coefficient of the excitation light, 1/cm scattering coefficient of the emitting light, 1/cm extinction coefficient (interaction or total attenua- tion coefficient), 1/cm transport coefficient modulus of the transverse correlation coefficient of the complex amplitude of the scattered field exponential factor of the spatial intensity fluctua- tions spatial or temporal variable characteristic depolarization length for linearly ($i = L$) and circularly ($i = C$) polarized light

ρ	polarization azimuth
ρ	distance from collimated sources
ρ_a	volume density of absorbers, 1/cm ³
ρ_b	blood density (kg/m ³)
ρ_{G}	gas density, kg/m ³
ρ _s	volume density of the scatterers, 1/cm ³
$\rho(s)$	probability density function of the optical paths
σ	half-width of particle size distribution
$\sigma = -\left(\frac{L_{\rm pd}}{L_{\rm p}}\right)$	molecular reflection coefficient
$(\sigma_1 - \sigma_2)$	difference in the in-plane principle stress
σ	two-photon absorption cross section, GM
σ_{abs}	absorption cross section of a particle, cm^2
$\overline{\sigma}_{abs}$	specific absorption coefficient. cm^{-1}
σ _b	effective backscattering cross section
σ _{ovt}	extinction cross section of a particle, cm^2
σ _ε	photon absorption cross section
σ ₁	standard deviation of the altitudes (depths) of inho-
011	mogeneities
Ωı	standard deviation of the intensity fluctuations
Ст От	standard deviation of relief variations (in optical
υL	lengths)
$\sigma_{\rm m}$	width of the skewed logarithmic distribution func- tion for the volume fraction of particles of diam- eter $2a$
$\sigma_{\rm s}(2a_i)$	optical cross section of an individual particle with diameter $2a_i$ and volume v_i cm ²
σ_{coo}	scattering cross section of a particle, cm^2
$\overline{\mathbf{O}}_{sca}$	specific scattering coefficient. cm^{-1}
Σ_{search}	scattering cross section for the system of particles
- sca	cm
σ_{Φ}	standard deviation of the phase fluctuations of the scattered field
σ_{I}^{2}	variance of the intensity fluctuations
$\sigma_{\rm s}^2$	spatial variance of the intensity in the speckle pat-
σ^2	variance of the output signal of the homodyne
υU	interferometer
$\sigma_{x,y}$	standard deviation of the CCD intensity counts at
	pixel (x, y) over the <i>n</i> frames
τ	delay time, s
τ	lifetime of the excited state, s
$\tau = \int_0^s \mu_t ds$	optical thickness
$\tau_{a} = \tilde{1}/\mu_{a}c$	average travel time of a photon before being absorbed, s

correlation time of intensity fluctuations in the scat-
tered field, s
time delay between optical and acoustical pulses, s
duration of a laser pulse, s
nonradiative relaxation time, s
pulse duration, s
time to response of the photodetector, s
time constant of rotational diffusion, s
characteristic rise time, s
temperature-averaging time within the biological cell
time delay for the thermal lens technique, s
thermal relaxation time, s
characterizes the random (Brownian) flow
characterizes the directed flow
random phase shift introduced by the RPS at the (x, x)
y) point
phase lag of harmonically modulated pressure, deg
phase shift defined by a scatterer position
angle of observation and azimuthal angle, angular deg
volume fraction of particles
deflection angle of a probe laser beam, angular degrees
<i>n</i> th order nonlinear susceptibility
third-order optical susceptibility, presented as a sum of the nonresonant and resonant contributions
heterodyne efficiency factor
solid angle, sr
frequency of harmonic vibrations
modulation frequency, 1/s
fundamental acoustic frequency
energy difference between the ground and excited states
packing factor of a medium filled with a volume
fraction f_s of scatterers
phase of the photon-density wave

Acronyms

ac	alternating current
ADC	amplitude- (or analog-) digital convertor
AF	autocorrelation function
AF	autofluorescence
AHA	α -hydroxy acid
ALA	aminolevulinic acid
AO	acousto-optical
AOD	acousto-optical deflector
AOM	acousto-optic modulator
AOT	acousto-optic tomography
APD	avalanche photodetector
ALA	δ-aminolevulinic acid
ATR	attenuated total reflection
ATR-FTIR	attenuated total reflectance Fourier transform infrared
AW	acoustic waves
BEM	boundary-element method
BSA	bovine serum albumin
BW	birefringent wedges
CARS	coherent anti-Stokes Raman scattering
CBF	cerebral blood flow
CCD	charge-coupled device
CDI	coherent detection imaging
CEA	carotid endarterectomy
CFD	constant-fraction discriminator
CIE	Commission Internationale de l'Eclairage (the French title
	of the International Commission on Illumination)
CIN	cervical intraepithelial neoplasia
CIS	carcinoma in situ
СМ	confocal microscopy
cmOCT	correlation map OCT
CMOS	complementary metal-oxide semiconductor
CNT	carbon nanotube

CP-OCT	cross-polarization OCT
CPU	central processing unit
CRI	contrast of refractive index
CSF	cerebrospinal fluid
СТ	computed tomography
CUDA	Compute Unified Device Architecture
CW	continuous wave
Cyt-c	cytochrome <i>c</i>
DBM	double-balanced mixer
dc	direct current
DCF	double-clad fiber
dcOCT	double correlation OCT
DCS	diffusion-correlation spectroscopy
DeoxyHb	deoxyhemoglobin
DG	delay generator
DHM	digital holographic microscope
DIS	double integrating sphere
DLP	digital light processing
DMD	digital micromirror device
DMSO	dimethyl sulfoxide
DNA	deoxyribonucleic acid
DOCP	degree of circular polarization
DOCT	Doppler OCT
DOLP	degree of linear polarization
DOP	degree of polarization
DOPA	3,4-dihydroxyphenylalanine
DOPE	dioleoylphosphatidylethanolamine
DPF	differential path length factor
DPS OCT	differential phase-sensitive OCT
DPSS	diode pumped solid state
DT	diffusion theory
DTC	disseminated tumor cell
DWS	diffusion wave spectroscopy
EB	Evans Blue
EDL	extensor digitorum longus
EDTA	ethylenediaminetetraacetic acid
EEM	excitation-emission map
ENT	ear, nose, and throat
ESCC	esophageal squamous cell carcinoma
ESR	erythrocyte sedimentation rate
FAD	flavin dinucleotide
FD	frequency domain
FDA	Food and Drug Administration
FD-LUM	frequency-domain luminescence

FD-OTR	frequency-domain OTR
FD-PTR-LUM	frequency-domain photothermal radiometry luminescence
FDPM	frequency-domain photon migration
FDTD	finite-difference time domain
FF-OCT	full-field OCT
FFT	fast Fourier transform
FG	function generator
FLIM	fluorescence lifetime imaging microscopy
FLMA	fractional laser microablation
FMN	flavin mononucleotide
FOV	field-of-view
FRAP	fluorescence recovery after photobleaching
FWHM	full-width half-maximum
GFP	green fluorescent protein
GHb	glycated hemoglobin
GK	Gegenbauer kernel
GKPF	Gegenbauer kernel phase function
GM	Goeppert Mayor
GNP	gold nanoparticle
GNR	gold nanorod
GNT	golden carbon nanotube
GPM	goniophotometric measurements
GPU	graphics processing unit
GRIN	gradient index
HCM	human cervical mucus
Hct	hematocrit
HDL	high-density lipoprotein
H&E	hematoxylin and eosin
HEM	human epidermal membrane
HG	Henvey–Greenstein
HGPF	Henvey–Greenstein phase function
HP	hologram plane
HPD	hematoporphyrin derivative
HPM	Hilbert phase microscopy
HRS	hyper-Rayleigh scattering
HWHM	half-width half-maximum
IAD	inverse adding-doubling
IC25	Infracyanine 25
ICG	indocvanine green
IF	intermediate frequency
IFS	interfibrillar spacing
IMC	inverse Monte Carlo
IMS	intermolecular spacing
IOC	immersion optical clearing

IQ	in-phase quadrature
IR	infrared
IS	integrating sphere
KDP	kalium dihydrophosphate
KMM	Kubelka–Munk model
LASCA	laser speckle contrast analysis
LAT	lung adenocarcinoma tumor
LBG	lung benign granulomatosis
LD	laser diode
LDA	laser Doppler anemometer
LDI	laser Doppler imaging
LDL	low-density lipoprotein
LDM	laser Doppler microscope
LED	light-emitting diode
LID	lattice of islet damage
LIPT	laser-induced pressure transient
LITT	laser-induced interstitial thermal therapy
LO	local oscillator
LPF	low-pass filter
LSCC	lung squamous cell carcinoma
LSI	laser speckle imaging
LSLO	line-scanning laser ophthalmoscope
LSM	light-scattering matrix
LSMM	laser scattering matrix meter
LSS	light scattering spectroscopy
LVDS	low-voltage differential signaling
MAR	modified amino resin
MB	methylene blue
MBG	mean blood glucose
MC	Monte Carlo
MCA	multi-channel analyzer
M-CARS	multiplex coherent anti-Stokes Raman scattering
MCML	Monte Carlo modeling of photon transport in multilayered tissues
MCP-PMT	multichannel plate-photomultiplier tube
MED	minimal erythema dose
MFP	mean free path length
MIM	multispectral imaging micropolarimeter
MIR	middle infrared
MNP	magnetic nanoparticle
MO	micro-objective
MONSTIR	multichannel optoelectronic near-infrared system for time-resolved
	image reconstruction
MPM	multiphoton microscopy

MPS	maximum permissible exposure
MPT	multiphoton tomography
MR	magnetic resonance
MRI	MR imaging
MSOAT	multispectral optoacoustic tomography
MTF	modulation transfer function
MTT	meal tolerance test
NA	numerical aperture
NAD	nicotinamide adenine dinucleotide
NAD ⁺	oxidized form of NAD
NADH, NAD·H	reduced form of NAD
NADP·H	reduced form of NAD phosphate
NIR	near infrared
NIRS	near infrared spectroscopy
NL	normal lung
NP	nanoparticle
OA	optoacoustic
OAT	OA tomography
OCA	optical clearing agent
OCE	optical coherence elastography
OCI	optical coherence interferometry
OCM	optical coherence microscopy
OCP	optical clearing potential
OCT	optical coherence tomography
OCTSS	OCT signal slope
OD	optical density
OFDI	optical frequency-domain imaging
OGTT	oral glucose tolerance test
OMA	optical multichannel analyzer
OMAG	optical microangiography
OPD	optical path difference
OPO	optical parametric oscillator
OR-PAM	optical resolution PAM
OT	optothermal
OTR	optothermal radiometry
OxyHb	oxyhemoglobin
PA	photoacoustic
PAM	photoacoustic microscopy
PBS	phosphate buffered solution
PC	personal computer
PD	photodetector
PDF	probability distribution function
PDMD	phase-delay measurement device

PDWFCS	photon-density wave fluctuation correlation spectroscopy
PEG	polyethylene glycol
PG	propylene glycol
PHA	pulse-height analysis
PhS-OCT	phase-sensitive OCT
PhS-SSOCT	phase-stabilized swept-source OCT
PM	polarization-maintaining
PMT	photomultiplier tube
POS	polyorganosiloxane
PPG	polypropylene glycol
PpIX	Protoporphyrin IX
PRS	polarized reflectance spectroscopy
PSF	point-spread function
PS-OCT	polarization-sensitive OCT
PS-OLCR	phase-sensitive optical low-coherence reflectometer
PT	photothermal
PTFC	PT flow cytometry
PTI	PT imaging
PTM	PT microscopy
PT-OCT	photothermal OCT
PTR	PT radiometry
PVA-C	polyvinyl alcohol cryogel
PVDF	polyvinyldenefluoride
PY	Percus–Yevick
QD	quantum dot
QELS	quasi-elastic light scattering
RA-SHG	random access second-harmonic generation
RBC	red blood cell
RC	relative contrast
RCM	reflection confocal microscopy
RC-PACT	ring-shaped confocal photoacoustic computed tomography
RF	radio frequency
RGA	Rayleigh–Gans approximation
RI	refractive index
rms	root mean square
RNA	ribonucleic acid
RNFL	retinal nerve fiber laver
ROI	region of interest
RPS	random phase screen
RSODL	rapid scanning optical delay line
RTE	radiative transfer equation
RTT	radiation transfer theory
RTV	room-temperature vulcanizing
RVA	retinal visual acuity

SAW	surface acoustic wave
SC	stratum corneum
SD-OCM	spectral-domain OCM
SD-OCT	spectral-domain OCT
SEM	standard error of the mean
SERS	surface-enhanced Raman scattering
SF	spatial filter
SFD	spatial-frequency domain
SFDI	spatial frequency-domain imaging
SHG	second harmonic generation
SIV	statistical intensity variation
SL	sonoluminescence
SLD	superluminescent diode
SLM	spatial light modulator
SLN	sentinel lymph nodes
SLT	SL tomography
SMF	skeletal muscle fibers
SMI	spatially modulated imaging
SMLB	spatially modulated laser beam
s-MTF	spatial modulation transfer function
SNR	signal-to-noise ratio
SOCS	skull optical clearing solution
SOI	scattering orientation index
SPD	sonophoretic delivery
SPEF	single-photon excitation fluorescence
SPR	spatially resolved reflectance
SPS	spatial phase shift
s-PSF	spatial point-spread function
SRR	spatially resolved reflectance
SSB	single sideband
SSOCT	swept-source OCT
SSS	superior sagittal sinus
ST	Staphylococcus toxin
STFT	short time Fourier transform
svOCT	Speckle variance OCT
SWI-OCT	shear wave imaging OCT
TA	thermoacoustic
TAC	time-to-amplitude convertor
TD	time-domain
TDM	time division multiplex
TDM	transillumination digital microscopy
TEWL	transepidermal water loss
TGS	thermal gradient spectroscopy
THb	total hemoglobin

TMP	trimethylolpropanol
TMR	transverse microradiography
t-MTF	temporal modulation transfer function
TOAST	time-resolved optical absorption and scattering tomography
TPEF	two-photon-excited fluorescence
t-PSF	temporal point-spread function
TRS	time-resolved spectroscopy
UHP	ultra-high performance
US	ultrasound
UV	ultraviolet
VLDL	very low density lipoprotein
VOA	variable optical attenuator
WBC	white blood cell
WP	Wollaston prism
VRTE	vector radiative transfer equation
VTW	virtual transparent window
WDM	wavelength division multiplex
WHO	World Health Organization
WMC	"white" Monte Carlo

Preface to the First Edition

Many up-to-date medical technologies are based on recent progress in physics, including optics.^{1–102} An interesting example relevant to the topic of this tutorial is provided by computer tomography.^{1,4} X-ray, magnetic resonance, and positronemission imaging techniques are extensively used in high-resolution studies of both anatomical structures and local metabolic processes. Another safe and technically simple tool currently in use is diffuse optical tomography.^{1,3,4,6,15,28,71}

From the viewpoint of optics, biological tissues and fluids (blood, lymph, saliva, mucus, gastric juice, urine, aqueous humor, and semen) can be separated into two large classes.^{1-40,40-69,92-97,101} The first class includes strongly scattering (opaque) tissues and fluids, such as skin, brain, vessel walls, eye sclera, blood, and lymph. The optical properties of these tissues and fluids can be described within the framework of a model of multiple scattering of scalar or vector waves in a randomly nonuniform absorbing medium. The second class consists of weakly scattering (transparent) tissues and fluids, such as cornea, crystalline lens, vitreous humor, and aqueous humor of the front chamber of the eye. The optical properties of these tissues and fluids can be described within the framework of a model of single scattering (or low-step scattering) in an ordered isotropic or anisotropic medium with closely packed scatterers with absorbing centers.

The vector nature of light waves is especially important for transparent tissues, although much attention has recently focused on the investigation of polarization properties of light propagating in strongly scattering media.^{3,5,6,8–10,23,28,43,59–64,69,70} In scattering media, the vector nature of light waves is manifested as the polarization of an initially nonpolarized light beam or as the depolarization (generally, change in the character of polarization) of an initially polarized beam propagating in a medium. Similar to coherence properties of a light beam reflected from or transmitted through a biological object, polarization parameters of light can be employed as a selector of photons originating from different depths in an object.

The problems of optical diagnosis and spectroscopy of tissues are concerned with two radiation regimes: continuous wave and time resolved.^{1,3,4,6,12,14,15,28,31,71,92} The latter is realized by means of the exposure of a scattering object to short laser pulses ($\sim 10^{-10}$ to 10^{-12} s) and the

subsequent recording of scattered broadened pulses (time-domain method), or by irradiation with modulated light, usually in the frequency range 50 to 1000 MHz, and recording the depth of modulation of scattered light intensity and the corresponding phase shift at modulation frequencies (frequency-domain or phase method). The time-resolved regime is based on the excitation of the photon-density wave spectrum in a strongly scattering medium, which can be described in the framework of the nonstationary radiation transfer theory (RTT). The continuous radiation regime is described by the stationary RTT.

Many modern medical technologies employ laser radiation and fiber optic devices.¹⁻⁷ Because the application of lasers in medicine has both fundamental and technical purposes, the problem of coherence is critical for the analysis of the interaction of light with tissues and cell ensembles. On one hand, this problem can be considered in terms of the loss of coherence due to the scattering of light in a randomly nonuniform medium with multiple scattering, or to the change in the statistics of speckle structures of the scattered field. On the other hand, this problem can be interpreted in terms of the appearance of an amplified, coherent, sharply directed component in backscattered radiation under conditions when a tissue is probed with an ultrashort laser pulse.^{1,3,73,74} The coherence of light is of fundamental importance for the selection of photons that have experienced few or zero scattering events, as well as for the generation of speckle-modulated fields from scattering phase objects with single and multiple scattering.^{1,3,75–77} Such approaches are important for coherent tomography, diffractometry, holography, photon-correlation spectroscopy, laser Doppler anemometry, and speckle interferometry of tissues and fluxes of biological fluids.^{1,3,5,15,22,28,76-83} The use of optical sources with short coherence length creates new opportunities in coherent interferometry and tomography of tissues, organs, and blood flows.^{1,3,8,17,18,77,84}

The transparency of tissues reaches its maximum in the near infrared (NIR), which is associated with the fact that living tissues do not contain strong intrinsic chromophores that absorb radiation within this spectral range. Light penetrates into a tissue for several centimeters, which is important for the transillumination of thick human organs (such as brain or breast). However, tissues are characterized by strong scattering of NIR radiation, which prevents one from obtaining clear images of localized inhomogeneities arising in tissues owing to various pathologies; e.g., tumor formation, local increase in blood volume caused by a hemorrhage, or growth of microvessels. Strong scattering of NIR radiation also imposes certain requirements on the power of laser radiation, which should be sufficient to ensure the detection of attenuated fluxes. Special attention in optical tomography and spectroscopy is focused on the development of methods for the selection of imagecarrying photons or the detection of photons providing the information concerning the optical parameters of the scattering medium. These methods employ the results of fundamental studies devoted to the propagation of laser beams in scattering media.^{1,3,4,6,15,28,31,71,92}

Another important area in which deep tissue probing is practiced is reflecting spectroscopy, e.g., optical oxymetry for the evaluation of the degree of hemoglobin

oxygenation in working muscular tissue, the diseased neonatal brain, or the active brain of adults.^{1,3,4}

This tutorial is primarily concerned with recently developed light-scattering techniques for quantitative studies of tissues and cell ensembles. It discusses the results of theoretical and experimental investigations into photon transport in tissues and describes methods for solving direct and inverse scattering problems for random media with multiple scattering and quasi-ordered media with single scattering, to model different types of tissue behavior. The theoretical consideration is based on stationary and nonstationary radiation transfer theories for strongly scattering tissues, Mie theory for transparent tissues, and the numerical Monte Carlo method, which is employed for the solution of direct and inverse problems of photon transport in multilayered tissues with complicated boundary conditions.

These are general approaches extensible to the examination of a large number of abiological scattering media. Many known methods of scattering media optics (e.g., the integrating sphere technique) were perfected when used in biomedical research. Concurrently, new measuring systems and algorithms for the solution of inverse problems have been developed that are useful for scattering media optics in general. Moreover, the improvement of certain methods was undertaken only because they were needed for tissue studies; this is especially true of the diffuse photon-density wave method, which is promising for the examination of many physical systems: aqueous media, gels, foams, air, and aerosols.

Based on such fundamental optical phenomena as elastic and quasi-elastic (static and dynamic) scattering, diffraction, and interference of optical fields and photon-density waves (intensity waves), we will discuss optical methods and instruments that offering promise for biomedical applications. Among these are spectrophotometry and polarimetry; time-domain and frequency-domain spectroscopy and imaging systems; photon-correlation spectroscopy; speckle interferometry; coherent topography and tomography; phase, confocal, and heterodyne microscopy; and partial coherence interferometry and tomography.

I am grateful to Terry Montonye, Donald O'Shea, Alexander Priezzhev, Barry Masters, and Rick Hermann for their valuable suggestions and comments on preparation of this tutorial.

I am very thankful to Andre Roggan, Lihong Wang, and Alexander Oraevsky for their valuable comments and constructive criticism of the manuscript.

I greatly appreciate the cooperation and contribution of all my colleagues, especially D.A. Zimnyakov, V.P. Ryabukho, S.S. Ul'yanov, I.L. Maksimova, V.I. Kochubey, S.R. Uts, I.V. Yaroslavsky, A.B. Pravdin, G.G. Akchurin, I.L. Kon, E.I. Zakharova (Galanzha), A.A. Bednov, A.A. Chaussky, S.Yu. Kuz'min, K.V. Larin, I.V. Meglinsky, A.A. Mishin, I.S. Peretochkin, and A.N. Yaroslavskaya.

I am very thankful to attendees of my short courses on biomedical optics, which I have giving during SPIE Photonics West International Symposia since 1992; for their good questions, fruitful discussions, and critical evaluations of presented materials. Their responses were very valuable for preparation of this volume. I am especially grateful to Michael DellaVecchia, Hatim Carim, Sandor Vari, M. Pais Clemente, Haishan Zeng, Leon Sapiro, and Zachary Sacks, who have been my good friends and colleagues for many years.

Prolonged collaboration with the University of Pennsylvania, my fruitful discussions with Britton Chance, Shoka Nioka, Arjun Yodh, David Boas, and many others were very helpful in writing this book.

My joint chairing with Halina Podbielska, Ben Ovryn, and Joe Izatt of the SPIE Conference on Coherence Domain Optical Methods in Biomedical Science and Clinical Applications was also very helpful.

The original part of this work was supported within the program "Leading Scientific Schools" of the Russian Foundation for Basic Research (project # 96-15-96389), USA–Russia CRDF grant RB1-230, and ISSEP grants p97-372, p98-768, and p99-703 within the program "Soros Professors."

I would like to thank all of my numerous colleagues and friends all over the world who kindly sent me reprints of their papers, which were used in this tutorial and greatly simplified my task, especially Y. Aizu, J.D. Briers, Z. Chen, B. Devaraj, A.F. Fercher, M. Ferrari, J.G. Fujimoto, M.J.C. van Gemert, E. Gratton, J. Greve, A.H. Hielscher, S.L. Jacques, R.G. Johnston, G.W. Kattawar, M. Keijzer, S.M. Khanna, A.Ya. Khairullina, A. Knüttel, J.R. Lakowicz, M.W. Lindner, Q. Luo, R.L. McCally, W.P. van de Merwe, G. Müller, F.F.M. de Mul, M.S. Patterson, B. Pierscionek, H. Rinneberg, P. Rol, W. Rudolph, B. Ruth, J.M. Schmitt, W.M. Star, R. Steiner, H.J.C.M. Sterenborg, L.O. Svaasand, J.E. Thomas, B.J. Tromberg, A.J. Welch, and J.R. Zip.

I would like to say a few words in memory of Pascal Rol, my good friend and colleague with whom I have organized many SPIE meetings. Pascal died suddenly on January 10, 2000. The reader will find many of his excellent results on scleral tissue optics in this tutorial. He has made many outstanding contributions to biomedical optics, and I will always remember him as a good scientist and friendly person.

I am very thankful to Ruth Haas, Erika Wittmann, and Sue Price for their assistance in editing and production of the book, and to S.P. Chernova and E.P. Savchenko for their help in the preparation of the figures.

Last, but not least, I express my gratitude to my wife, Natalia, and all my family for their support, understanding, and patience.

Valery Tuchin April 2000

Preface to the Second Edition

This is the second edition of the tutorial on *Tissue Optics: Light Scattering Methods* and Instruments for Medical Diagnosis, first published in 2000. The last seven years since the printing of the first edition of the book have seen intensive growth of research and development into tissue optics, particularly in the field of tissue diagnostics and imaging.¹⁰³⁻¹⁴⁴ Further developments in light-scattering techniques have been made for the quantitative evaluation of optical properties of normal and pathological tissues and cell ensembles. New results on theoretical and experimental investigations into light transport in tissues have been found, as have methods for solving direct and inverse scattering problems for quasi-ordered media and random media with multiple scattering. A few specific fields, such as optical coher-ence tomography (OCT), ^{108–111,115,116,126,127,129,130,136,142} and polarization-sensitive technologies,^{129,130,135,136,138,139} which are very promising for optical medical diagnostics and imaging, have developed rapidly over the last few years. The optical clearing method, based on reversible reduction of tissue scattering through refractive index matching of scatterers and ground matter, has also been of great interest for research and application since the last edition.^{129,132,136,139,140} Further developments in Raman and vibrational spectroscopies^{104,105,123,130,132,136,143} and multiphoton microscopy^{114,119,122,130,132,136,137} applied to morphology and the functioning of living cells and tissues have been provided by many research groups.

This new edition of this book is conceptually the same as the first. It is also divided into two parts: Part I describes the fundamentals and basic research of tissue optics, and Part II presents optical and laser instrumentation and medical applications. The author has corrected misprints, updated the references, and added some new results, primarily on measurements of tissue optical properties (Chapter 2) and polarized light interaction with turbid tissues (Section 1.4). Recent results on polarization imaging and spectroscopy techniques (Chapter 7), and on OCT developments and applications (Chapter 9) are also overviewed. Materials on controlling tissue optical properties (Chapter 5) and optothermal and optoacoustic interactions of light with tissues (Section 1.5) are updated. Brief descriptions of fluorescent, nonlinear, and inelastic light scattering spectroscopies are provided in Chapter 1.

I am grateful to Sharon Streams for her suggestion to prepare the second edition of the tutorial and for her assistance in editing of the book. I also would like to thank Merry Schnell for her assistance on the final stage of book editing and production.

I am very thankful to attendees of my short courses "Coherence, Light Scattering, and Polarization Methods and Instruments for Medical Diagnosis," "Tissue Optics and Spectroscopy," "Tissue Optics and Controlling of Tissue Optical Properties," and "Optical Clearing of Tissues and Blood," which I have given during SPIE Photonics West Symposia, SPIE/OSA European Conferences on Biomedical Optics, and OSA CLEO/QELS Conferences over the last seven years, for their stimulating questions, fruitful discussions, and critical evaluations of presented materials. Their responses were very valuable for preparation of this edition. My joint chairing with Joseph A. Izatt and James G. Fujimoto of the SPIE Conference on Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine also was very helpful.

The original part of this work was supported within Russian and international research programs by grant N25.2003.2 of President of Russian Federation "Supporting of Scientific Schools," grant N2.11.03 "Leading Research-Educational Teams," contract No. 40.018.1.1.1314 "Biophotonics" of the Ministry of Industry, Science and Technologies of RF, grant REC-006 of CRDF (U.S. Civilian Research and Development Foundation for the Independent States of the Former Soviet Union) and the Russian Ministry of Education, the Royal Society grants for joint projects between Cranfield University (UK) and Saratov State University, grants of National Nature Science Foundation of China (NSFC), grant of Federal Agency of Education of RF No. 1.4.06, RNP.2.1.1.4473, CRDF grants BRHE RUXO-006-SR-06 and RUB1-570-SA-04, and by Palomar Medical Technologies Inc., MA.

I greatly appreciate the cooperation, contributions, and support of all my colleagues from Optics and Biomedical Physics Division of Physics Department and Research-Educational Institute of Optics and Biophotonics of Saratov State University, especially A.N. Bashkatov, I.V. Fedosov, E.I. Galanzha, E.A. Genina, I.L. Maksimova, I.V. Meglinski, V.I. Kochubey, V.P. Ryabukho, A.B. Pravdin, G.V. Simonenko, Yu.P. Sinichkin, S.S. Ul'yanov, D.A. Yakovlev, and D.A. Zimnyakov.

I would like to thank all my numerous colleagues and friends all over the world for collaboration and sending materials which were used in this tutorial and made my work much easy, especially P.E. Andersen, J.F. de Boer, S.A. Boppart, Z. Chen, P.M.W. French, J.G. Fujimoto, V.M. Gelikonov, P. Gupta, C.K. Hitzenberger, X.H. Hu, J.A. Izatt, S.L. Jacques, A. Kishen, S.J. Kirkpatrick, A. Knüttel, J.R. Lakowicz, K.V. Larin, G.W. Lucassen, Q. Luo, A. Mahadevan-Jansen, B.R. Masters, K. Meek, M. Meinke, G. Müller, F.F.M. de Mul, R. Myllylä, L. Oliveira, M. Pais Clemente, L.T. Perelman, A. Podoleanu, A.V. Priezzhev, F. Reil, J. Rodriguez, H. Schneckenburger, A.M. Sergeev, A.N. Serov, N.M. Shakhova, B.J. Tromberg, T. Troy, L.V. Wang, R.K. Wang, A.J. Welch, A.N. Yaroslavskaya, I.V. Yaroslavsky, P.V. Zakharov, and V.P. Zharov. I express my gratitude to my wife, Natalia, and all my family, especially to my daughter, Nastya, and grandchildren, Dasha, Zhenya, and Stepa, for their indispensable support, understanding, and patience during my writing this book.

> Valery Tuchin June 2007

Preface to the Third Edition

The idea to publish the third edition of this book was stimulated by several factors and strongly supported by SPIE Press staff. A couple of years ago, SPIE Press received requests to republish this book in Russian by Fizmatlit Publishers (Moscow) and in Japanese by Optronics (Tokyo). Since the second edition of the English language book was issued seven years ago, and accounting for rapid developments in the field of tissue optics and corresponding optical medical instrumentation, the author offered to provide the further updates of this book to SPIE Press before its translation. In addition, the book structure was changed to provide more convenient and readable presented materials. The third edition contains 14 chapters instead of 9, as in the second edition. In addition, chapters related to optical properties of tissues, nonlinear spectroscopy, and imaging were substantially updated.

Since the second edition of *Tissue Optics*, many other monographs, special issues of journals, and conference proceedings have been published related to tissue optics and biophotonics. This highlights the urgency of this research field and education, as well as the growing market for biomedical optics, medical lasers and fibers, optical biosensors, high-speed digital cameras, other devices for medical diagnostics and treatment, and skill training.^{6,116,118,137,145–210} These books and journals address similar issues to those discussed in this monograph; in many ways, they are essentially complementary to *Tissue Optics* and can be recommended for more in-depth study of selected topics.

The previous editions of *Tissue Optics* contained two glossaries on (1) physics, statistics, and engineering; and (2) medicine, biology, and chemistry. These glossaries have been considerably updated and were recently published as a separate book, V.V. Tuchin, *Dictionary of Biomedical Optics and Photonics*, SPIE Press (2012) (see Ref. 210). Therefore, the third edition does not contain Glossaries because the reader can use this published dictionary instead.

The book is intended for researchers, teachers, and graduate and undergraduate students specializing in the physics of living systems, biomedical optics and biophotonics, laser biophysics, and applications of lasers in biomedicine. This monograph can be useful as a textbook for students of physical, engineering, biological, and medical specialties.

Acknowledgments

The original materials included in the monograph were obtained with the financial support of many Russian Federation (RF) and International grants and research programs, such as grants of the President of RF "Supporting of Scientific Schools" (00-15-96667, 25.2003.2, 208.2008.2, 1177.2012.2, 703.2014.2); grant 2.11.03/1.4.09 "Leading Research-Educational Teams;" Russian and International grants of Russian Foundation for Basic Research (RFBR) (98-02-17997, 03-02-17359, 05-08-50318-a, 06-02-16740-a, 08-02-92224-NNSF-a (RF-China), 13-02-91176-NNSF-a (RF-China), 10-02-90039-Bel-a, 11-02-00560-a, 11-02-12248-ofi-m, 12-02-92610-RS-a), and 14-02-00526-a); grants of RF Ministry of Science and Education 2.1.1/4989 and 2.2.1.1/2950; RF Governmental contracts 40.018.1.1.1314 "Biophotonics," 02.740.11.0484, 02.740.11.0770, 02.740.11.0879, 11.519.11.2035, 12.740.11.0871, 12.740.11.0871, 12.740.11. 1156, 14.B37.21.0728, 14.B37.21.0563, 14.512.11.0022; grants of U.S. Civilian Research and Development Foundation for the Independent States of the Former Soviet Union (CRDF) (BRHE RUXO-006-SR-06; Next Step to the Market Program, RUB1-570-SA-04; BP1M06 RUX0-006-SR-06; RUB1-2932-SR-08); the Royal Society grants for joint projects between Keele University, Cranfield University, St. Andrews University, (UK) and Saratov State University, 2002-2006, 2012-2014; grant 224014 Photonics4life-FP7-ICT-2007-2; grants of National Nature Science Foundation of China (NSFC); collaborative projects of Palomar Medical Technologies Inc., MA, USA; FiDiPro grant of TEKES, Finland (40111/11); SCOPES Project (IZ74ZO 137423/1-2011-2014, Switzerland, Russia, and Uzbekistan); grant 14.Z50.31.0004 of the RF Government to support scientific research projects implemented under the supervision of leading scientists; The Tomsk State University Academic D.I. Mendeleev Fund Program; and grants 14-15-00186 and 14-15-00128 of the Russian Science Foundation.

Many results presented in this monograph on modeling of tissue optical properties were provided by Irina L. Maximova, who was a very talented scientist and who passed away too early, in 2013.

The author expresses his deep gratitude to J.T. Alander, G.B. Altshuler, P. Andersen, R.R. Anderson, S. Andersson-Engels, V.A. Bochko, S.A. Boppart, E. Borisova, A.V. Bykov, M.E. Darvin, A. Diaspro, V.A. Doubrovsky, A. Douplik, D.D. Duncan, M. Fedorov, J.G. Fujimoto, E.I. Galanzha, S.L. Jacques, I.K. Ilev, J.A. Izatt, V.V. Kalchenko, T.G. Kamenskikh, V.A. Khanadeev, B.N. Khlebtsov, N.G. Khlebtsov, B.-M. Kim, M. Kinnunen, M.Yu. Kirillin, K. Kordás, J. Lademann, K.V. Larin, I.V. Larina, M.J. Leahy, P. Li, Q. Luo, L.I. Malinova, D. Matthews, I.V. Meglinski, O. Minet, R. Myllylä, T. Myllylä, M.M. Nazarov, L. Oliveira, F. Pavone, L. Perelman, R. Pini, A.P. Popov, J. Popp, A.V. Priezzhev, J. Qu, D.D. Sampson, A.P. Savitsky, A.M. Sergeev, J. Spigulis, A.P. Shkurinov, O. Sydoruk, S. Tanev, A. Tárnok, G.S. Terentyuk, V.Yu. Toronov, B. Tromberg, S.R. Utz, P. Valisuo, A. Vitkin, L. Wang, R. Wang, B.C. Wilson, M. Wolf, A.N. Yaroslavsky, I.V. Yaroslavsky, V.P. Zharov, D. Zhu, and all his colleagues in the Saratov State University and the Institute of Precise Mechanics and Control of RAS, especially to D.A. Agafonov, G.G. Akchurin, Yu.A. Avetisyan, A.N. Bashkatov, V.L. Derbov, L.E. Dolotov, I.V. Fedosov, E.A. Genina, V.I. Kochubey, A.S. Kolesnikov, E.A. Kolesnikova, V.V. Lychagov, A.B. Pravdin, V.P. Ryabukho, O.V. Semyachkina-Glushkovskaya, G.V. Simonenko, Yu.P. Sinichkin, Yu.S. Skibina, A.V. Solovieva, P.A. Timoshina, N.A. Trunina, D.K. Tuchina, E.S. Tuchina, M.A. Vilensky, D.A. Yakovlev, A.N. Yakunin, I.Yu. Yanina, A.A. Zanishevskaya, O.S. Zhernovaya, and D.A. Zimnyakov for collaboration, discussion of the results and valuable comments.

I would like to express my gratitude to Eric Pepper and Tim Lamkins for their suggestion to prepare the third edition of the book and to Dara Burrows for assistance in editing the book.

I am grateful to my wife, Natalia Tuchina, and entire family for their exceptional patience and understanding.

Valery V. Tuchin December 2014