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Editor’s Introduction: Optical
Methods for Biomedical
Diagnosis
Valery V. Tuchin
Saratov National Research State University

National Research Tomsk State University

Institute of Precision Mechanics and Control, Russian Academy of Sciences

I.1 Historical Aspects and Brief Overview

The history of light application for monitoring tissues and cells for the
purpose of disease diagnosis is presented in Refs. 1–14. In 1831, Bright had
reported that sunlight or light from a candle was able to shine through the
head of a patient with hydrocephalus.10 The ability of light to transilluminate
tissues was later noted by Curling in 1843, and by Cutler in 1929 for
monitoring breast lesions.11,14,15 In 1911, Hasselbalch undertook studies of
ultraviolet transmission through the skin, and by the early 1930s textbooks
providing good scientific data on optical transmission, absorption, and
fluorescence of tissues were available. The properties of skin in the near-
infrared (NIR) range were reported by Pearson and Norris in 1933 and by
Hardy and Muschenheim in 1935.4 Due to strong light scattering and
autofluorescence, such early studies allowed for understanding only some of
the general optical properties of tissues.

Millikan was the first to suggest the dual-wavelength optical spectroscopy
method for correction of light scattering, and he was successful in metabolite
analysis in humans.1,12,16 In the 1930s, 1940s, and early 1950s, many studies of
the spectroscopy of hemoglobin in tissues were undertaken.1 In vivo
measurements of NIR transmittance spectra of the human earlobe and cheek
done by Il’ina revealed many new important details about tissue spectra, such
as the presence of a water band at 980 nm17
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The use of NIR light for deep transillumination of mammalian tissues,
including the adult human head, and the diagnostic value of NIR light for the
assessment of hemoglobin oxygen saturation and the cytochrome aa3
oxidation–reduction (redox) state in thick tissues were demonstrated in 1977
by Frans Jobsis.18,19

For many years, Britton Chance was a pioneer in the development of
tissue optics and biomedical spectroscopy.1,2,12,20–22 He applied spectroscopy
for physiological studies of bioenergetics, for trend measurements of
hemoglobin oxygenation, and for investigation of cytochrome oxidation.
For more precise quantification of the absorbing species in tissues and
therefore of the potential utility of this approach for clinical sensing, Chance
and co-workers22 and Delpy and co-workers23 suggested time-resolved
spectroscopy using pulse transillumination and detecting—the so-called
time-domain (TD) technique. Later, this approach was further developed by
Patterson and co-workers24 and Jacques25 to be applied for reflectance
measurements, and was used by many investigators for tissue studies and
designing of optical diagnostic instruments.1,2,5–14,26–28

In 1990, Lakowicz and Berndt29 extended the time-resolved spectroscopy
of tissues by using a frequency-domain (FD) approach, which is mathemati-
cally equivalent to the time-domain approach, but allows for a more robust
and sensitive measuring technique to be designed.30 The subsequent discovery
of a new type of waves—photon-density waves8—and their interference31

raised the possibility that the FD approach might be able to improve
significantly the spatial resolution of tissue spectroscopic analysis.32

Many studies on in vitro and in vivo tissue spectrophotometry using
continuous-wave (CW), TD, or FD techniques are overviewed in Refs. 1–14,
26–28, and 32. The development of the cooled charge-coupled device (CCD),
time- and spatial-resolved techniques, and other instruments has proceeded at
an increasing pace to a wider area of NIR spectroscopy investigations and
biomedical applications. At present, more than 500 NIR spectroscopy clinical
instruments are available commercially for monitoring and imaging of a
tissue’s degree of oxygenation, concentration of oxidized cytochrome, and
tissue hemodynamics.10

The relative simplicity of measuring the human skin reflectance and
fluorescence spectra meant that these values were first obtained many years
ago. Nevertheless, only in the last three decades have quantitative spectral
techniques for in vivo monitoring and diagnosis of certain cutaneous and
systematic diseases been introduced.3,13 Historical review of these develop-
ments can be found in Refs. 3 and 33.

Various fluorescence techniques, such as those based on autofluores-
cence and on microscopy using fluorescent markers, time-resolved (phase
and time-gated), laser scan, and multiphoton technologies, have been used to
study human tissues and cells in situ noninvasively.9,13,14,34–38 Fluorescence
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techniques are applicable to medical diagnoses of various pathologies
affecting many tissues, including those involving the eye. Many robust and
powerful combined optical diagnostic techniques, such as fluorescence/light
scattering and fluorescence/Raman scattering, have also been
designed.35–37,39

Raman spectroscopy, which is a great tool for studying the structure and
dynamic function of biologically important molecules,40 also has been used
extensively for monitoring and diagnosis of disease in vitro and in vivo during
the past three decades. Examples of its applications include cataracts,
atherosclerotic lesions in coronary arteries, precancerous and cancerous
lesions in human soft tissues, and bone and teeth pathologies.13,39,41–43 The
successful use of Raman spectroscopy is due to improvements in instrumen-
tation in the NIR spectrum, where fluorescence is significantly reduced.

Among prospective noninvasive blood glucose sensing methods, optical
techniques such as NIR and middle-infrared (MIR) (2.5–50 mm) spectropho-
tometry, fluorescence, and Raman spectroscopy are of great interest to
investigators.34,44 MIR spectroscopy—and particularly attenuated total
reflectance Fourier transform infrared spectroscopy—is also important for
in vivo monitoring of the human skin components.13,45 MIR and Raman
spectroscopy are both examples of so-called vibration spectroscopy, which is
characterized by highly specific bands that are dependent on species
concentration.41–45

Light scattering spectroscopy (LSS) is a novel technique capable of
identifying and characterizing pathological changes in human tissues at the
cellular and subcellular levels. It can be used to diagnose and detect disease,
including through noninvasive monitoring of early cancerous changes in
human epithelium.13,46

Quasi-elastic light scattering spectroscopy (QELSS), as applied to
monitoring of dynamic systems, is based mainly on the correlation or spectral
analysis of the temporal fluctuations of the scattered light intensity.47 QELSS,
which is also known as light-beating spectroscopy or correlation spectroscopy,
is widely used for various biomedical applications, but especially for blood or
lymph flow measurement and cataract diagnostics.6,13,48–51 For studying
optically thick tissues when multiple scattering prevails and photon migration
(diffusion) within tissue is important for the character of intensity fluctuations,
diffusion wave spectroscopy (DWS) is available.8,13

Optothermal or photothermal spectroscopy (OTS/PTS), which is based on
detection of the time-dependent heat generation induced in a tissue by pulsed
or intensity-modulated optical radiation, is widely used in biomedicine.13,52–54

Among the various OTS methods, the optoacoustic (OA) and photoacoustic
(PA) techniques are of great importance. They allow one to estimate the
optical, thermal, and acoustic properties that depend on peculiarities of a
tissue’s structure.

xixEditor’s Introduction



I.2 Optical Diffuse Techniques

I.2.1 CW spectrophotometry

The specificity of optical diffuse techniques that use a CW light source and
detection, applied to in vivo spectroscopy of thick tissues (e.g., the female
breast or the newborn head) could be described by the following semi-
empirical exponential equation for the collimated transmittance Tc(l):

13,55

TcðlÞ ¼ x1 exp½�maðlÞLðlÞx2�, (I.1)

where L(l) is the total mean path length of the photons. This equation reflects
the wavelength (l) dependency on absorption, ma(l) and reduced (transport)
scattering coefficients ms

0(l); x1 takes into account multiply scattered but
nonabsorbed photons, which do not arrive at the detector, and the
measurement geometry; x2 compensates for measurement error of the slab
thickness d and inaccuracies in the reduced scattering coefficient
m0
s ¼ mð1� gÞ, and ms and g are the tissue scattering coefficient and

anisotropy factor of scattering, respectively. For a slab of thickness d, the
diffusion equation can be used to calculate a total mean path length L of the
photons.24

Equation (I.1) was successfully used for fitting of the in vivo measurement
spectra of the female breast and estimations of the concentrations of the
following absorbers: water (H2O), fat (f), deoxyhemoglobin (Hb), and
oxyhemoglobin (HbO):55

ma ¼ CH2O sH2O þ cfsf þ cHb sHb þ cHbOsHbO, (I.2)

where si is the cross section of the absorption of the ith component. By
varying the concentrations of the four tissue components, the measurement
spectra could be fitted well using Eq. (I.2); the correlation coefficients were
better than 0.99 in all cases.55

For many tissues, in vivo measurements are possible only in the geometry
of the backscattering.13,14 The corresponding relation for light reflectance R
can be based on diffusion approximation. For backscattering optical
spectroscopy, we have to know, in addition to the measured coefficient of
reflection, the depth from which the optical signal is coming. For a spatially
separated light source and detector (for example, two fibers normal to the
tissue surface), that depth is defined by the photon-path distribution function
for the photons migrating from a source to a detector. This spatial distribution
function for a homogeneous scattering medium has a “banana” shape. The
curve of the most probable direction of a photon migration of the “banana”
region reaches a maximum depth, zmax, which depends on the source–detector
separation rsd:

13,56
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zmax ≈ ð1∕2
ffiffiffi
2

p
Þrsd (I.3)

Instead of Eq. (I.1), which is used for in vivo studies in transillumination
experiments, a modified form of the Beer–Lambert law is used to describe the
optical attenuation in backscattering geometry:13,56

I∕I 0 ¼ expð�εab · cab · rsd · DPF� GsÞ, (I.4)

where I is the intensity of detected light, I0 is the intensity of the incident light,
�ab is the absorption coefficient measured in mmol–1 cm–1, cab is the
concentration of absorber in mmol, DPF is the differential path length factor
accounting for the increase of the photons' migration paths due to scattering,
and Gs is the attenuation factor accounting scattering and geometry of the
tissue.

When rsd, DPF, and Gs are kept constant, the changes of absorbing
medium concentration can be calculated using measurements of the changes
of the optical density (OD), D(OD)¼D(log(I0/I)):

56

Dcab ¼ DðODÞ∕εabrsdDPF: (I.5)

Using optical spectroscopy or imaging, the changes in the optical density
are measured as follows:

DðODÞ ¼ logðI0∕I testÞ � logðI0∕I restÞ ¼ logðI restÞ � logðI testÞ, (I.6)

where Irest and Itest represent, respectively, the light scattering intensity of the
object (e.g., brain tissue, skeletal muscle) detected during rest and during
testing that involves induced brain activity, cold or visual testing, training, or
some other experimental condition. For example, based on the OD changes at
the wavelengths 760 and 850 nm, one can get either the absorption images for
the two measuring wavelengths or functional images (oxygenation or blood
volume) within the detection region of study:

DðODÞoxy¼DðODÞ850�DðODÞ760; DðODÞtotal¼DðODÞ850þkbvoDðODÞ760,
(I.7)

where (OD)850 and (OD)760 are the optical densities measured at the
wavelengths 850 and 760 nm, and kbvo is the modification factor for reducing
the cross-talk between changes of blood volume and oxygenation.

The typical in vivo backscattering spectrum (400–700 nm) for a tissue
contains the absorption bands of hemoglobin (the Soret and Q-bands).13,57,58

It also encompasses some absorption from compounds such as flavins, beta-
carotene, bilirubin, and cytochrome, among others. On the basis of
measurement of the spectral differences of normal and pathological tissues,
the corresponding spectral signature “identifiers” can be created. For in vivo
medical diagnosis, the spectral “identifiers” typically use the ratios of the
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integrated reflection coefficients within selected spectral bands or the
measurement of the spectrum slope for the selected spectral bands. As an
internal standard for evaluating the absolute concentrations of the blood
components in a tissue, the water band at 980 nm can be used.57

I.2.2 Eye tissues

Even such transparent tissues as the human cornea scatter light because the
total and axial (collimated) transmissions are not identical.13,59 Due to the low
scattering, water absorption peaks are evident at 300, 980, 1180, 1450, 1900,
and 2940 nm. They provide for poor transmission of light through the cornea
in the ultraviolet (UV) and infrared (IR) spectral regions.

Average spectral transmittance derived from cornea transmittance
measurements in the spectral range 320–700 nm on 10 subjects (14–75 years)
was modeled by the following functions for the total transmittance Tt(l)
(acceptance angle close to 180 deg) and axial transmittance Tc(l) (acceptance
angle of about 1 deg):60

LogTtðlÞ ¼ �0.016� 21 · 108l�4
0 , LogTcðlÞ ¼ �0.016� 85 · 108l�4

0 ,

(I.8)

where l0 is the wavelength in nanometers.
The normal human eye lens is less transparent than the cornea for the

visible light, because, in addition to scattering, absorption by different
chromophores including 3-hydroxy-L-kynurenine-O-b-glucoside and age-
related protein (responsible for lens yellowing in older adult subjects) is
important.13,35,61

The sclera shows poor transparency because of strong light scattering
by its structure elements (a system of polydispersive, irregularly arranged
collagen cylinders immersed in the ground substance with a lower refractive
index).13 Such a fibrous structure allows for easy control of the
human sclera transmittance at a refractive index matching that of collagen
fibers and ground material through its impregnation by the immersion
liquid.13

I.2.3 Time-domain method

Time-dependent radiation transfer theory (RTT) makes it possible to analyze
the time response of scattering tissues.1,2,5–14,22–26,55,62 When probing the
plane-parallel layer of a scattering medium with a short laser pulse, the
transmitted pulse consists of a ballistic (coherent) component, a group of
photons having zigzag trajectories, and a highly intensive diffuse component.
Both unscattered photons and photons undergoing forward-directed single-
step scattering contribute to the intensity of the component consisting of
photons traveling straight along the laser beam. This component is subject to
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exponential attenuation with increasing sample thickness—a factor that
accounts for the limited utility of such photons for practical diagnostic
purposes in medicine.

The group of snake photons with zigzag trajectories includes photons,
which experience only a few collisions each. They propagate along trajectories
that deviate only slightly from the direction of the incident beam and form the
first-arriving part of the diffuse component. These photons carry information
about the optical properties of the random medium.

The diffuse component is very broad and intense since it contains the bulk
of incident photons after they have participated in many scattering acts and,
in turn, migrate in different directions and have different path lengths. The
diffuse component carries information about the optical properties of the
scattering medium, and its deformation may reflect the presence of local
inhomogeneities in the medium. However, the resolution obtained by this
method at a high light-gathering power is much lower than that obtained by
measuring straight-passing photons. Two principal probing schemes are
conceivable—one recording transmitted photons and the other taking
advantage of their backscattering.

The time-dependent reflectance is defined as24,25

Rðrsd ,tÞ ¼
z0

ð4pcDÞ3∕2 t
�5∕2 expð� r2sd þ z20

2cDt
Þ expð�ma ctÞ, (I.9)

where t is time, z0 ¼ ðm0
sÞ�1, and D ¼ 1∕3ðm0

s þ maÞ is the photon diffusion
coefficient in centimeters. To convert the last value to cm2/s, it should be
multiplied by c, the velocity of light in the medium (with units of cm/s).

In practice, ma and m0
s are estimated by fitting Eq. (I.9) with the shape of a

pulse measured by the time-resolved photon counting technique. An
important advantage of the pulse method is its applicability to in vivo studies,
in that ma and m0

s can be evaluated separately using a single measurement for a
definite source–detector distance rsd.

I.2.4 Frequency-domain method

The frequency-domain (FD) method measures the modulation depth of
scattered light intensity mU ≡ ACdetector/DCdetector and the corresponding phase
shift relative to the incident light modulation phase ΔF (phase
lag).1,2,5–14,29–32,62–64 Compared with the TD measurements, this method is
simpler and more reliable in terms of data interpretation and noise, because it
involves amplitude modulation at low peak powers, slow rise time, and hence
smaller bandwidths than the TD method. Higher signal-to-noise ratios are
attainable as well. Medical device FD equipment is more economic and
portable.32 However, the FD technique suffers from the simultaneous
transmission and reception of signals, and it requires special efforts to avoid
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unwanted cross-talk between the transmitted and detected signals. The current
measuring schemes are based on heterodyning of optical and transformed
signals.13,32

The development of the theory underlying this method resulted in the
discovery of a new type of waves: photon-density waves, which are
progressively decaying waves of intensity. Microscopically, individual
photons make random migrations in a scattering medium, but collectively
they form a photon-density wave at a modulation frequency v that moves
away from a radiation source. Photon-density waves possess typical wave
properties; for example, they undergo refraction, diffraction, interference,
dispersion, and attenuation.1,2,5–14,29–32,62

In strongly scattering media with weak absorption far from the walls and
from a source or a receiver of radiation, the light distribution may be regarded
as a decaying diffusion process described by the time-dependent diffusion
equation for photon density. For a point light source with harmonic intensity
modulation at frequency v¼ 2pn placed at the point ~r ¼ 0, an alternating
component (AC) of intensity is a going-away spherical wave that has its center
at the point ~r ¼ 0 and that oscillates at a modulation frequency with
modulation depth

mUð~r,vÞ ¼ mI exp
�
~r

ffiffiffiffiffiffiffiffiffiffiffiffi
ma∕D

p �
exp

�
�~r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v∕2cD

p �
, (I.10)

and undergoes a phase shift relative to the phase value at point~r ¼ 0 equal to

DFð~r,vÞ ¼~r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v∕2cD

p
, (I.11)

where mI is the intensity modulation depth of the incident light.
The length of a photon-density wave, LF, and its phase velocity, VF, are

defined by

L2
F ¼ 8p2cD∕v and V2

F ¼ 2cDv (I.12)

.
Measuring mUð~r,vÞ, DFð~r,vÞ allows one to separately determine the

transport scattering coefficient m0
s and the absorption coefficient ma and then

to evaluate the spatial distribution of these parameters.
For typical female breast tissue at 800 nm ðm0

s ¼ 15 cm–1,
ma ¼ 0.035 cm–1Þ for v/2p¼ 500 MHz, and c¼ (3 � 1010/1.33) cm/s, the
wavelength is LF ≅ 5.0 cm and the phase velocity is VF ≅ 1.77� 109cm∕s.

A number of FD systems demonstrating achievements in the field of
optical in vivo diagnostics applied for clinical study have been described.13,32

For example, to obtain quantitative measurements of the absolute
optical parameters of various types of tissue, a portable, high-bandwidth
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(0.3–1000 MHz), multi-wavelength (674, 811, 849, and 956 nm) frequency-
domain photon migration instrument was designed.63–66

I.2.5 Photon-density wave interference method

The photon-density wave interference method was described first in Ref. 31
and is also known as the phase and amplitude cancellation method and as
the phased-array method. It appears very promising as a means to improve
the spatial resolution of the modulation technique.13,32 This idea is based on
the use of either duplicate sources and a single detector or duplicate detectors
and a single source, so that the amplitude and phase characteristics can be
compensated and the system becomes a differential. If equal amplitudes at
0-deg and 180-deg phases are used as sources, an appropriate positioning of
the detector can lead to a null in the amplitude signal and a crossover between
a 0- and 180-deg phase shift—that is, 90 deg.

In a heterogeneous medium, the apparent amplitude’s null and the phase’s
crossover may be displaced from the geometric midline. This method is
extremely sensitive to perturbation by an absorber or scatterer. A spatial
resolution of approximately 1 mm for the inspection of an absorbing
inhomogeneity has been achieved, and the same resolution is expected for the
scattering inhomogeneity. Another good feature of the technique is that at the
null condition, the measuring system is relatively insensitive to amplitude
fluctuations common to both light sources. Inhomogeneities that affect a large
tissue volume common to the two optical paths cannot be detected, however.
The amplitude signal is less useful in imaging since the indication of position is
ambiguous. Although this can be accounted by further encoding, the phase
signal is more robust, and a phase noise less than 0.1 deg (signal-to-noise ratio
more than 400) for a 1-Hz bandwidth can be achieved.32

I.2.6 Spatially modulated spectroscopy and imaging

In diffuse techniques, spatially resolved measurements have been generally
limited to “multi-distance” measurements, tracking the spatial dependence of
a reflected or transmitted light field generated from a point-like illumination
and detection with a number of source–detector separations rsd.

13 The Fourier
transform equivalent to the real spatial domain is the spatial-frequency
domain (SFD).65,66 In diffractive optics, spatially structured illumination
techniques are used for manipulating of optical images. Spatially modulated
laser beams also have been used effectively in studies of scattering objects,
including samples of tissues and blood.13,67 This technique has mostly been
applied to investigate low-scattering objects or thin tissue slices and blood
layers. However, it was approved successfully for investigation of whole
cataractous human eye lenses based on averaging of interferential fringes to
eliminate speckle modulation.13
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The interactions of spatially modulated light beams with diffuse media are
described in Refs. 65, 66, and 68–73. Instead of laser beams, low-cost
incoherent conventional white light sources are widely used with this
approach. Spatially modulated imaging (SMI) provides a wide-field mapping
of scattering tissues in the SFD. The spatial modulation transfer function (s-
MTF) of a turbid tissue encodes both depth and optical property information,
enabling both quantitation and tomographic imaging of the spatially varying
tissue’s optical properties.71 Similarly to time-resolved methods, the SMI
method can be described analytically using diffusion-based theory, or
numerically using Monte Carlo simulations in the framework of an RTT-
based approach. The optical properties of tissues can be recovered by analysis
with the analytic diffusion model using an inversion method, such as a least-
squares multifrequency fitting algorithm or a more rapid two-frequency
lookup table approach.65,66,68–73

The spatially modulated photon density can be considered as “standing”
photon-density waves. The basic principles underlying generation of spatially
modulated photon-density plane waves were formulated in Ref. 71. Their
properties were also described by using spatial-frequency spectral representa-
tion. As a first approximation, a diffusion theory was used to get analytical
expressions valid for a relatively large transport albedo L0 ¼ m0

s
maþm0

s
and small

spatial frequencies. However, based on Monte Carlo modeling of the
transport equation, the results can be extended to low albedo and high
spatial frequency modes.

For the time-independent form of the diffusion equation for a
homogeneous medium with a semi-infinite geometry and a normally incident
periodically modulated plane wave, the source function Sd can be presented in
the form71

Sd ¼ SdoðzÞ cosðkxxþ aÞ cosðkyyþ bÞ (I.13)

with spatial frequencies fx¼ (kx/2p) and fy¼ (ky/2p), and spatial phases a and
b, extending infinitely in the tangential spatial dimensions x and y, with some
arbitrary dependence on depth z.

If the medium’s response is proportional to the input intensity, this
sinusoidal modulation will give rise to a diffuse fluence rate U with the same
frequency and phase:

U ¼ U0ðzÞ cosðkxxþ aÞ cosðkyyþ bÞ: (I.14)

A plane wave with both x and y modulation gives rise to a photon-density
wave propagating with a scalar attenuation coefficient:
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m0
eff ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2
eff þ k2x þ k2y

q
¼ 1

d0eff
, (I.15)

where

meff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3maðm0

s þ maÞ
p

(I.16)

and d
0
eff is the effective light penetration depth into a scattering medium.

Although spatial anisotropy may exist in real tissues, to understand scalar
photon-density wave attenuation in multiply scattering media, 1D projection
can be used for simplicity; that is, k¼ kx, with constant illumination along y
(ky¼ 0). At zero spatial frequency (k¼ 0), the effective light penetration depth
into a scattering medium, d

0
eff , is equivalent to that of a planar (none-

modulated) illumination, deff ¼ ð1∕meffÞ. In general, however, m
0
effðand d

0
effÞ

are functions of both optical properties and the spatial frequency of
illumination. Thus, at known parameters of illumination, it is possible to
evaluate the optical properties of tissues.

The amplitude of the periodic wave, U0(z), is independent of the
tangential spatial dimensions x and y. As a consequence, existing planar
geometry solutions of the diffusion equation can be used to describe spatially
modulated photon density by simply substituting meff with the new m

0
eff term.

I.3 Fluorescence Spectroscopy

I.3.1 Fundamentals and methods

Fluorescence arises upon light absorption and is related to an electron’s
transition from the excited state to the ground state within a molecule. In the
case of thin samples (e.g., biopsies that are a few micrometers in thickness),
the fluorescence intensity IF is proportional to the concentration c and the
fluorescence quantum yield h of the absorbing molecules.34,74–76 In a
scattering medium, the path lengths of scattered and unscattered photons
within the sample are different, and should be accounted for.34

At excitation of biological objects by ultraviolet light (l≤ 300 nm),
fluorescence of their components, such as proteins and nucleic acids, should
be observed. Fluorescence quantum yields of all nucleic acid constituents,
however, are approximately 10–4 to 10–5, corresponding to lifetimes of the
excited states in the picosecond time range. Autofluorescence (AF) of proteins
is related to the amino acids tryptophan, tyrosine, and phenylalanine, which
have absorption maxima at 280 nm, 275 nm, and 257 nm, respectively, and
emission maxima between 280 nm (phenylalanine) and 350 nm (trypto-
phan).34,74–76 Fluorescence from collagen or elastin is excited between 300 and
400 nm and shows broad emission bands between 400 and 600 nm, with
maxima around 400 nm, 430 nm, and 460 nm. In particular, fluorescence of
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collagen and elastin can be used to distinguish various types of tissues
(e.g., epithelial versus connective tissues) and their pathology.9,13,28,58,61,74–82

The reduced form of coenzyme nicotinamide adenine dinucleotide
(NADH) is excited selectively in a wavelength range between 330 nm and
370 nm. NADH is most concentrated within mitochondria, where it is
oxidized within the respiratory chain located within the inner mitochondrial
membrane. Its fluorescence is an appropriate parameter for detection of
ischemic or neoplastic tissues.75 Fluorescence of free and protein-bound
NADH has been shown to be sensitive to oxygen concentration. Flavin
mononucleotide (FMN) and dinucleotide (FAD), which have excitation
maxima around 380 nm and 450 nm, respectively, have also been reported to
contribute to intrinsic cellular fluorescence.75

Porphyrin molecules—for example, protoporphyrin, coproporphyrin, uro-
porphyrin, and hematoporphyrin—occur within the pathway of biosynthesis of
hemoglobin, myoglobin, and cytochromes.75 Abnormalities in heme synthesis,
such as are observed in porphyrias and some hemolytic diseases, may
considerably enhance the porphyrin level within tissues. Several bacteria (e.
g., Propionibacterium acnes and bacteria within dental caries lesions) accumulate
considerable amounts of protoporphyrin. Therefore, measurements of intrinsic
fluorescence appear to be a promising method for detecting acne or caries.

At present, various exogenous fluorescing dyes can be applied to probe
cell anatomy and cell physiology.75 In humans, such dyes as fluorescein and
indocyanine green are already used for fluorescence angiography or blood
volume determination. In vivo fluorescence probes rely on a family of
fluorescent proteins (FP). Based their emission maxima, blue, green, yellow,
and red fluorescent proteins may be distinguished. The most popular is the
green fluorescent protein (GFP). After cloning of the FP gene, various FP
variants with different excitation and emission properties have been produced.
When genes coding for a specific cellular protein are fused with FP or its
variants, functional and site-specific tracking in living cells or even whole
organisms becomes possible.

Fluorescence spectra often give detailed information on fluorescent
molecules, including their conformation, binding sites, and interactions
within cells and tissues. Fluorescence intensity can be measured as a function
of either the emission wavelength or the excitation wavelength. The
fluorescence emission spectrum IF(l), which is specific for any fluorophore,
is commonly used in fluorescence diagnostics. Fluorescence spectrometers for
in vivo diagnostics are commonly based on fiber-optic systems and use of an
optical multichannel analyzer (OMA; a diode array or a CCD camera) as a
detector of emission radiation.58,74–78

Various comprehensive and powerful fluorescence spectroscopies, such as
microspectrofluorimetry, polarization anisotropy, time-resolved with pulse
excitation and frequency-domain, time-gated, total internal reflection
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fluorescence spectroscopy and microscopy, fluorescence resonant energy transfer
method, confocal laser scanning microscopy, and their combinations are
available now.34,74–82 These methods support the following applications (see
Chapter 5 in Volume 2):75

1. 3D topography of specimens measured in the reflection mode for
morphological studies of biological samples

2. High-resolution microscopy measured in the transmission mode
3. 3D fluorescence detection of cellular structures and fluorescence bleaching

kinetics
4. Time-resolved fluorescence kinetics
5. Studies of the motions of cellular structures
6. Time-gated imaging so as to select specific fluorescent molecules or

molecular interactions
7. Fluorescence lifetime imaging
8. Spectrally resolved imaging

Fluorescence is also beneficial in the practical work carried out by medical
staff members. Concepts and applications of fluorescence imaging for
surgeons are discussed in recent book83 and in reviews and original
papers.84–86 Indocyanine green (ICG) is a NIR fluorescent dye that has been
used in medical diagnostics for almost six decades, yet has great potential in
the development of new imaging systems for several surgical specialties due to
its unique molecule binding and spectral properties.84,85 The introduction of
new clinical applications has occurred especially rapidly during the last few
years. ICG fluorescence imaging in the areas of plastic and reconstructive
surgery, neurosurgery, and cardiac, vascular, oncological, and hepatic surgery
is reviewed in Ref. 85.

The inability to identify microscopic tumors and assess surgical margins in
real time during oncologic surgery, which may lead to incomplete tumor
removal, prompted authors of a recent paper to develop a wearable-goggle
augmented imaging and navigation system (GAINS); this system can provide
accurate intraoperative imaging of tumors and sentinel lymph nodes (SLNs)
in real time without disrupting normal surgical workflow.86 The optical
system projects both NIR fluorescence from the tumors and the natural-color
images of tissue onto a head-mounted display without latency. Human pilot
studies in breast cancer and melanoma patients using a NIR dye show that
GAINS detected SLNs with 100% sensitivity. Clinical use of GAINS to guide
tumor resection and SLN mapping promises to improve surgical outcomes,
reduce rates of repeat surgery, and improve the accuracy of cancer staging.

I.3.2 In vivo human skin fluorescence

Currently, reflectance and fluorescence spectroscopies are probably the most
developed among the available optical methods for investigating skin in vivo.
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Reflectance and fluorescence from skin carry information about the structure
of the epidermis and dermis, the quantity and density of blood vessels, the
concentration and spatial distribution of chromophores and fluorophores in
the skin, and the nature of skin metabolic processes. Typical applications
include the in vivo quantitative analysis of skin erythema and pigmentation,
determination of cutaneous color variation, monitoring of dermatological
treatment effects, determination of skin photo-aging, diagnosis of skin
tumors, and study of skin biophysics.3,76,77,79–81,87,88

The potential advantages and possible applications resulting from
combined use of reflectance and fluorescence spectroscopy of the skin for
the evaluation of erythema and pigmentation indices, the determination of
hemoglobin oxygenation and concentration, and the investigation of the
efficacy of topical sunscreens are discussed in Chapter 3 in Volume 2.76

Most of the biological components that are either related to the skin tissue
structure or are involved in metabolic and functional processes generate
fluorescence emission in the UV-visible spectral region. As a result, different
morpho-functional conditions of the skin related to histological, biochemical,
and physiochemical alterations can be characterized, in principle, on the basis
of information available in fluorescence excitation–emission maps
(EEMs).6,76,78,80

Among the various endogenous skin fluorophores, different forms of
NAD and keratin located in the epidermis and in collagen located in the
dermis can be found. The reduced (NADH) and oxidized (NADþ) forms of
NAD have roles in cellular metabolism, and the intensity of their specific
fluorescence (fluorescence maxima near 460 nm and 435 nm, respectively) is
used in differential diagnostics for metabolism dysfunction.76

Collagen and elastin are found predominantly within the papillary and
reticular layers of the dermis. For these substances, both excitation light and
emission light are attenuated because absorption by melanin and fluorescence
intensity in the 400–480 nm range is subject to attenuation by other skin
chromophores—hemoglobin, porphyrins, carotenoids, and so on.76,81

Recent studies of endogenous and exogenous fluorescence skin cancer
diagnostics for clinical applications are overviewed in Ref. 88.

I.3.3 Advantages of multi-photon fluorescence

A new direction in laser spectroscopy of tissues and cells has emerged with the
introduction of multi-photon (two-photon, three-photon) fluorescence scan-
ning microscopy. This technique makes it possible to image functional states
of an object or, in combination with autocorrelation analysis of the
fluorescence signal, to determine the intercellular motility in small
volumes.13,38,89–92 Multi-photon fluorescence employs sharply focused ballis-
tic photons at a long wavelength that provide fluorescence excitation by the
second or third harmonic of the incident radiation. Fluorescence comes to a
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wide-aperture photodetector exactly from the focal area of the excitation
beam.

A unique advantage of multi-photon microscopy is the possibility of
investigating three-dimensional distributions of chromophores excited with
ultraviolet radiation in relatively thick samples. Such an investigation
becomes possible because chromophores can be excited (e.g., at a wavelength
of 350 nm) with laser radiation whose wavelength for two-photon-excitation
fluorescence (TPEF) (700 nm) falls within the range where a tissue has high
transparency. Such radiation can reach deep layers and produces less damage
in tissues. Fluorescent emission in this case lies in the visible range
(wavelengths greater than 400 nm). It emerges comparatively easily from a
tissue and reaches a photodetector, which registers only the legitimate signal
from the focal volume without any extraneous background noise.

TPEF of target molecules in a tissue is a nonlinear process induced by the
simultaneous absorption of two NIR photons, whose total energy is sufficient
to excite the electronic state of the molecular transition. In general, photons
with different wavelengths l1 and l2 can be used

1
l1f

≅
1
l1

þ 1
l2

, (I.16)

where l1f is the wavelength necessary to excite the fluorescence at single-
photon absorption. However, the excitation by the same light source
(i.e., l1¼ l2 and l2≅ 2l1f) is more practical.

The two-photon absorption cross section for biological molecules s2 is
typically very small (approximately 1 GM¼ 10–58 m4s–1), so intense photon
fluxes on the order of 1030 photons per second per square meter (s–1m–2) are
required. Pulsed excitation (approximately 10–13 s), which allows for
reduction of the heat load on the tissue and selective excitation of individual
electronic transitions of biological molecules, is preferable.

For a pulse laser with repetition rate fp¼ 1/T and a duration of the
rectangular pulses tp, the time-averaged intensity of the TPEF is expressed
as13,89
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�
2
, (I.17)

where k is the coefficient taking into account the collection efficiency of the
fluorescent photons, h¼ h(lem) is the fluorescence quantum yield, Pave¼
(tp·fp)Ppeak is the average power, Ppeak is the peak power, and NA is the
numerical aperture of the microscope objective.

It follows from Eq. (I.17) that the excitation of fluorescence emission by a
pulse laser with a wavelength l¼ 1000 nm, an average power of 1 mW at a
repetition rate of 80 MHz, and a pulse duration of 100 fs, focused by the
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objective with NA¼ 1.4 onto the tissue with a typical two-photon cross
section s2¼ 10 GM¼ 10–57 M4c–1 provides a rate of fluorescence photon
counting equal to 105 Hz.

Three-photon fluorescence microscopy of a tissue possesses the same
advantages as two-photon microscopy but ensures a somewhat higher spatial
resolution and provides an opportunity to excite chromophores with shorter
wavelengths.

I.4 Second-Harmonic Generation (SHG)

Second-harmonic generation (SHG) is a new high-resolution nonlinear optical
imaging modality for study of intact tissues and cellular structures.13,92–94

SHG is a second-order nonlinear optical process that can arise only from
media lacking a center of symmetry—for example, an anisotropic crystal or at
an interface such as a membrane. This technique can be used to image highly
ordered structural proteins without any exogenous labeling. Collagen is a
main component of connective tissues due to its helix secondary structure,
which is noncentrosymmetric; it has a dominant uniaxial second-order
nonlinear susceptibility component aligned along the fiber axis and, therefore,
satisfies the conditions for SHG. In the skin, SHG light is generated mostly
within the dermis, rather than in cellular layers such as the epidermis or
subcutaneous fat.

SHG techniques offer a number of advantages connected with the incident
wavelength’s division and its selectivity to tissue structure, which allow one to
reject surface reflection and multiple scattering of the incident light in the
upper epithelial layer without any gating technique. As in the case of multi-
photon excited fluorescence, SHG arises from a very small tissue volume
within a focal volume of the sharply focused NIR laser beam. As a result, it
provides a high spatial resolution, in-depth probing, and separation of
excitation and detection signals. In spite of the high power density in the focal
spot, a very short pulse (50–200 fs) allows for generation of harmonics in the
living tissue with no damage to it due to the low overall energy.13,92–94

In general, the nonlinear polarization for a material can be expressed as93

P ¼ xð1ÞEþ xð2ÞEEþ xð3ÞEEEþ : : : , (I.18)

where P is the induced polarization, x(n) is the nth order nonlinear
susceptibility, and E is the electric field vector of the incident light. The first
term describes normal absorption and reflection of light; the second describes
SHG, sum, and difference frequency generation; and the third describes both
two- and three-photon absorption, as well as third-harmonic generation and
coherent anti-Stokes Raman scattering (CARS).

SHG, unlike two-photon fluorescence, does not arise from an absorptive
process. Instead, an intense laser field induces a nonlinear, second-order
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polarization in the assembly of molecules, resulting in the production of a
coherent wave at exactly twice the incident frequency (or half the wavelength).

The SHG pulse is temporally synchronous with the excitation pulse. A
simplified expression for the SHG signal intensity has the form93

Ið2vÞ ∝
�
xð2Þ

EðvÞ
tp

�
tp, (I.19)

where E(v) is the laser pulse energy. As in TPEF [see Eq. (I.17)], the signal is
quadratic with peak power, but since SHG is an instantaneous process, a
signal is generated only for the duration of the laser pulse.

I.5 Vibrational Spectroscopy

Middle-infrared (MIR) and Raman spectroscopies use light-excited vibra-
tional energy states in molecules to obtain information about the molecular
composition, structures, and interactions in a sample.40–45,95,96 In MIR
spectroscopy, infrared light from a broadband source (usually 2.5–25 mm or
4000–400 cm–1) is directly absorbed to excite the molecules to higher
vibrational states. In Raman scattering, event light is inelastically scattered by
a molecule when a small amount of energy is transferred from the photon to
the molecule (or vice versa). The energy difference between incident and
scattered photons is expressed in a wavenumber shift (cm–1).

The MIR and Raman spectroscopy techniques have been successfully
applied to various areas addressed by clinical studies, such as cancerous
tissues examination, the mineralization process of bone and teeth, tissues
monitoring, glucose sensing in blood, noninvasive diagnosis of skin lesions
based on benign or malignant cells, and monitoring of treatments and
topically applied substances (e.g., drugs, cosmetics, moisturizers) to the
skin.41–45,95–102

Raman spectroscopy is widely used in biological studies, ranging from
studies of purified biological compounds to investigations at the level of single
cells.40,96 At present, combinations of spectroscopic techniques such as MIR
and Raman spectroscopy with microscopic imaging techniques are being
explored to map molecular distributions at specific vibrational frequencies on
samples so as to locally characterize tissues or cells.95–99 Chemical imaging is
expected to become increasingly more important in clinical diagnosis in the
future.

Because the penetration depth of MIR light in tissue extends to only a few
micrometers, the attenuated total reflectance Fourier transform infrared
spectroscopy (ATR-FTIR) method is well suited to study changes of the
outermost cell layers of the tissue.95

The Raman technique exhibits certain characteristics that make it
particularly suitable for studying the skin, both in vitro and in vivo.45,95,100
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Confocal detection is particularly useful to studying the outer skin layers, such
as the stratum corneum and viable epidermis. Since the dermis is much thicker
than the epidermis (1–4 mm thick), it can easily be studied using a non-
confocal detection scheme, given a detection volume that is large compared to
the thickness of the epidermis.95

I.6 Coherent Anti-Stokes Raman Scattering (CARS)

Coherent anti-Stokes Raman scattering (CARS) is a third-order nonlinear
optical process in which three excitation fields interact to produce a fourth
field, which is detected [see Eq. (I.18)].13,98,99 In general, two laser beams with
frequencies npump and nS are tuned to get their difference (npump – nS) to be
equal to the frequency nvib of a vibrational transition of the sampling
molecules. Then the probing laser beam with frequency nprobe generates
resonantly a fourth enhanced field with frequency nAS¼ (npumpþ nvib).
Typically only two laser beams are used to generate CARS signal, because
a so-called frequency-degenerate optical scheme with npump¼ nprobe can be
applied.

The intensity of CARS signal depends quadratically on the modulus of the
induced third-order polarization P(3) in the sample [see Eq. (I.18)]

IAS ∝ jPð3Þj2, (I.20)

where P(3) depends on the third-order optical susceptibility that can be
presented as a sum of the nonresonant and resonant contributions

Pð3Þ ¼
�
x
ð3Þ
nonres þ x

ð3Þ
res

�
EpumpEprobEs (I.21)

The main advantages of CARS compared to conventional Raman
spectroscopy, besides the opportunity to amplify the signal by more than four
orders of magnitude, are the direct signal generation, narrow band, and
complete absence of the influence of autofluorescence as the signal is
generated at wavelengths shorter than the wavelength of excitation. Since
three nonlinear methods—CARS, TPEF, and SHG—are technically imple-
mented using the similar experimental equipment, they are often used together
as part of a multimodal approach to obtain more information about the
fundamental processes in tissues and cells.13,98,99,103,104

I.7 Light-Scattering Spectroscopy

Based on classical measurements of light scattering, innovative techniques
capable of identifying and characterizing pathological changes in human
tissues at the cellular and subcellular levels have been proposed.13,46,58,105–109

Light-scattering spectroscopy (LSS) provides structural and functional
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information about a tissue. This information can be used, in turn, to diagnose
and monitor disease. One important application of biomedical spectroscopy is
the noninvasive detection of early cancerous human epithelium.46,106,109 The
enlarging, crowding, and hyperchromaticity of the epithelium cell nuclei are
common features to all types of precancerous and early cancerous conditions.
LSS can be used to detect such early cancerous changes and other diseases in a
variety of organs, such as the esophagus, colon, uterine cervix, oral cavity,
lungs, and urinary bladder.109

Cells and tissues have complex structures with a very broad range of
scatterer size—from a few nanometers, the size of a macromolecule; to
7–10 mm, the size of a nucleus; and to more than 20–50 mm, the size of a cell
itself.13,106 A great variety of cell organelle structures are small compared to
the wavelength used in LSS. Light scattering by such particles, which is
known as Rayleigh scattering, is characterized by a broad angular
distribution; the scattering cross-section dependence on the particle’s linear
dimension a is characterized as a6 and that on the light wavelength l is
characterized as l–4. When the particle is not small enough, coupled dipole
theory or another approach such as Rayleigh–Gans approximation (RGA)
can be used. RGA is particularly applicable to particles with a size
comparable to the wavelength and may be useful for studying light scattering
by small organelles such as mitochondria and lysosomes. With use of RGA,
scattering in the forward direction prevails, and the total scattering intensity
increases with the increase in the particle relative refractive index m as (m – 1)2

and with its size as a6.
The scattering by a particle with dimensions much larger than the

wavelength, such as a cell nucleus, can be described within the framework
of the van de Hulst approximation, which enables scattering amplitudes in
the near-forward direction to be obtained.106 For large particles, the
scattering intensity is highly forward directed, and the width of the first
scattering lobe is approximately l/a; the larger the particle, the stronger
and narrower the first lobe. The forward scattering intensity exhibits
oscillations with the wavelength. The origin of these oscillations is
interference between the light ray passing through the center of the
particle and a light ray not interacting with it. The frequency of these
oscillations is proportional to a(m – 1), so it increases with the particle
size and refractive index. The intensity of the scattered light also peaks in
the near-backward direction, but this peak is significantly smaller than the
forward-scattering peak.

These results agree well with the rigorous scattering theory developed for
spherical particles (Mie theory).110 To discriminate among the cell structure
peculiarities originating from a pathology, the difference in light scattering
can be used. The structures with large dimensions and high refractive index
produce the scattered field that peaks in the forward and near-backward
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directions, whereas smaller and more optically “soft” structures scatter light
more uniformly.

The photons returned after a single scattering in the backward or near-
backward directions produce the so-called single-scattering component. The
photons returned after multiple scattering events produce the diffuse
reflectance. Although the spectra of both single-scattering and diffusive
signals contain valuable information about tissue properties, the type of
information they provide is different. The single-scattering component is
sensitive to morphology of the upper tissue layer, which in case of any
mucosal tissue almost always includes or is limited by the epithelium. Its
spectroscopic features are related to the microarchitecture of the epithelial
cells—that is, the sizes, shapes, and refractive indices of their organelles,
inclusions, and sub-organellar components. Thus, analysis of this component
might be useful in diagnosing diseases limited to the epithelium, such as
preinvasive stages of epithelial cancers, dysplasias, and carcinomas in situ
(CIS).46,106,109

The single-scattering component is more important in diagnosing the
initial stages of epithelial precancerous lesions, whereas the diffusive
component provides valuable information about more advanced stages of
the disease. However, single scattering events cannot be directly observed in
tissues in vivo, because only a small portion of the light incident on the tissue is
directly backscattered.

Several methods to distinguish single scattering have been proposed.
Field-based light-scattering spectroscopy111 and optical coherence tomogra-
phy (OCT)13,112 were developed for performing cross-sectional tomographic
and spectroscopic imaging. In these extensions of conventional OCT,13

information on the spectral content of backscattered light is obtained by
detection and processing of the interferometric OCT signal. These methods
allow the spectrum of backscattered light to be measured either for several
discrete wavelengths111 or simultaneously over the entire available optical
bandwidth from 650 to 1000 nm112 in a single measurement.

A much simpler polarization-sensitive technique is based on the fact that
initially polarized light loses its polarization when traversing a turbid
tissue.113,114 A conventional spatially resolved backscattering technique with
a small source–detector separation can be used as well.46 In that case,
however, the single scattering component (2–5%) should be subtracted from
the total reflectance spectra.

The promise of LSS for diagnosing dysplasia and CIS was tested in
human studies in three different types of in vivo epithelium: columnar epithelia
of the colon and Barrett’s esophagus, transitional epithelium of the urinary
bladder, and stratified squamous epithelium of the oral cavity.109 The
spectrum of the reflected light was analyzed to determine the nuclear size
distribution. In all studied organs, a clear distinction was apparent between
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dysplastic and nondysplastic epithelium. Both dysplasia and CIS have a
higher percentage of enlarged nuclei and, on average, a higher population
density—characteristics that can be used as the basis for spectroscopic tissue
diagnosis.109

I.8 Optical Coherence Tomography (OCT)

Optical coherence tomography (OCT) was first demonstrated in 1991.115

Imaging was performed in vitro in the human retina and in atherosclerotic
plaque as examples of imaging in transparent, weakly scattering media as well
as highly scattering media. This is an urgent field of research, with
applications attracting more and more end-users. State-of-the-art mono-
graphs, tutorials, and special issues of journals describing principles and
biomedical applications of OCT are widely available.13,51,116–131

OCT is analogous to ultrasonic imaging that measures the intensity of
reflected NIR light, rather than reflected sound waves from the sample. Time
gating is employed so that the time required for the light to be reflected back,
known as the echo delay time, can be used to assess the intensity of
backreflection as a function of depth. Unlike in ultrasound, the echo time
delay, which is on an the order of femtoseconds in optics, is measured by using
an optical interferometer illuminated by a low coherent light source.

This technique is conventionally implemented with the use of a dual-beam
Michelson interferometer. If the path length of light in the reference arm is
changed with a constant linear speed v, then the signal arising from the
interference between the light scattered in a backward direction (reflected)
from a sample and the light in the reference arm is modulated at the Doppler
frequency

f D ¼ 2n
l
. (I.22)

Owing to the small coherence length of a light source, the Doppler signal
is produced by backscattered light only within a very small region (on the
order of the coherence length lc) corresponding to the current optical path
length in the reference arm. For the light source with a Gaussian line profile

lc ¼
2 lnð2Þ

p
·
l2

Dl
, (I.23)

where Δl is the Gaussian line bandwidth.
If a superluminescent diode (SLD) with a bandwidth of 15–60 nm (l ≈

800–860 nm) is employed, the longitudinal resolution falls within the range of
5–20 mm. For a titanium–sapphire laser with a wavelength of 820 nm, the
bandwidth may reach 140 nm. Correspondingly, the resolution is 2.1 mm.116
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Transverse resolution of OCT is defined by a light beam spot, which is
typically from 5 to 20 mm.

In the literature, one can find descriptions of several different OCT
systems, ranging from conventional amplitude or time-domain OCT to
advanced systems combining, for example, spectral-domain OCT (SD-OCT)
with multi-photon tomography (MPT) for 3D multimodal in vivo
imaging.13,51,112,115–131 Time-domain OCT is a single-point detection
technique. It can be used to generate two-dimensional OCT images up to
the video rate, although such systems have a limited sensitivity or a limited
space–bandwidth product (resolved pixels per dimension). For some
applications, two-wavelength fiber OCT is effective. Ultrahigh-resolution
fiber OCT systems are also available. Frequency- and Fourier-domain OCT
techniques are based on backscattering spectral interferometry and,
therefore, are also called spectral-domain OCT (SD-OCT). Such systems
are widely used in biomedical studies and in clinics. Doppler OCT (DOCT)
combines the Doppler principle with OCT to obtain high-resolution
tomographic images of static and moving constituents in highly scattering
tissues. Optical microangiography (OMAG) is an OCT technique that
utilizes a constant modulation frequency to separate the signal associated
with the movement in the RBS vascular bed from the backscatter signal.
Correlation-map OCT (cmOCT) applies two-dimensional OCT images to
reconstruct blood vessel distribution within the skin.

The specificity of conventional OCT can be improved by providing
measurements of polarization properties of probing radiation when it
propagates through a tissue. This approach was implemented in the
polarization-sensitive OCT technique (PS-OCT). In its turn, phase-sensitive
OCT (PhS-OCT) provides quantitative dispersion data that are important in
predicting the propagation of light through tissues, in photorefractive surgery,
and in tissue and blood refractive index measurements. PhS-OCT systems are
often used in tissue elastography. Indeed, the prospective technique called
optical coherence elastography (OCE) takes advantage of high-resolution
OCT to provide quantitative evaluation of a tissue’s mechanical properties.

Full-field or parallel OCT (FF-OCT) uses linear or two-dimensional
detector arrays of, respectively, N and N2 single detectors. The advantage of
parallel OCT is that when using linear or 2-D detector arrays, the SNR can be
roughly

ffiffiffiffiffi
N

p
and N times larger, respectively, compared to the single detector

signal.
Optical coherence microscopy (OCM) is a biomedical modality for cross-

sectional subsurface imaging of tissue that combines the ultimate sectioning
abilities of OCT and confocal microscopy (CM). In OCM, spatial sectioning
due to tight focusing of the probing beam and pinhole rejection provided by
CM is enhanced by additional longitudinal sectioning provided by OCT
coherence gating.
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Application of the fiber-optic light-delivering and light-collecting cables
allows one to build a flexible OCT system that facilitates endoscopic analysis
of human tissues and organs—in particular, high-speed in vivo intra-arterial
imaging. The feasibility of OCT ultrathin needle probes for imaging of breast
cancer, dystrophic skeletal muscles, tendons, connective tissues, and air-filled
lungs has already been demonstrated.

The speckle OCT method has been shown to be a viable alternative to the
Doppler OCT in 2D imaging of blood flow. Flow information can be
extracted using speckle fluctuations in conventional time-domain OCT. One
optical coherence elastography (OCE) technique that takes advantage of the
high resolution of OCT and the high sensitivity of speckles is based on speckle
tracking; it has been widely studied to evaluate the skin’s mechanical
properties both qualitatively and quantitatively.

One important advance related to OCT systems is the combination of
this technology with other optical diagnostic modalities so as to achieve a
synergetic effect in diagnostic ability. Technically this combination could be
realized by using miniature fiber optical probes, shared light sources, optical
pathways and scanning systems, and so on. In fact, dual OCT/confocal
microscopy (CM) systems have already been described. A dual imaging en
face OCT/CM system was used in ophthalmology for imaging of the anterior
chamber of the eye and in dentistry. The combination of dual en face OCT/
CM with fluorescence imaging gives a universally applicable instrument in
microscopy. All-fiber-optic-based endoscopy for simultaneous OCT and
fluorescence tissue imaging provides clear visualization of structural
morphologies (OCT) and fluorophore distribution (the fluorescence
module). Multi-photon tomography (MPT) and SD-OCT can be used for
3D multimodal in vivo imaging of normal skin, nevi, scars, and pathologic
skin lesions. Photothermal OCT (PT-OCT) using gold nanorods (GNRs) as
contrast agents has been shown to be a potentially powerful tool for
molecular imaging. Adaptive optics-assisted OCT is currently under
development and holds promise for subcellular imaging in biology and
medicine.

I.9 Dynamic Light-Scattering Spectroscopy and Tomography

I.9.1 Photon-correlation spectroscopy

Quasi-elastic light-scattering spectroscopy (QELSS), photon-correlation
spectroscopy, spectroscopy of intensity fluctuations, and Doppler spectros-
copy are synonymous terms for technologies based on the dynamic scattering
of light—a capability that underlies a noninvasive method for studying the
dynamics of particles on a comparatively large time scale.13,14,47–51 The
implementation of the single-scattering mode and the use of coherent light
sources are of fundamental importance in this case. The spatial scale of testing

xxxixEditor’s Introduction



for an ensemble of biological particles is determined by the inverse of the wave
vector j�sj�1:

j�sj ¼ ð4pn∕l0Þ sinðu∕2Þ, (I.24)

where n is the refractive index and u is the angle of scattering. With allowance
for self-beating due to the photomixing of the electric components of the
scattered field on a photodetector, the intensity autocorrelation function can
be expressed as g2ðtÞ ¼ hIðtÞIðtþ tÞi For Gaussian statistics, this autocorre-
lation function is related to the first-order autocorrelation function by the
Siegert formula:

g2ðtÞ ¼ A
	
1þ bsbjg1ðtÞj2



, (I.25)

where t is the delay time; A ¼ hii2 is the square of the mean value of the
photocurrent, or the baseline of the autocorrelation function; bsb is the parameter
of self-beating efficiency, bsb ≈ 1; and g1ðtÞ ¼ expð�GTtÞ is the normalized
autocorrelation function of the optical field for a monodisperse system of
Brownian particles. GT ¼ j�sj2DT is the relaxation parameter and DT¼ kBT/
6phrh is the coefficient of translation diffusion, kB is the Boltzmann constant, T
is the absolute temperature, h is the absolute viscosity of the medium, and rh is
the hydrodynamic radius of a particle. Many biological systems are characterized
by a bimodal distribution of diffusion coefficients, when fast diffusion (DTf) can
be separated from slow diffusion (DTs) related to the aggregation of particles.
The goal of QELSS is to reconstruct the distribution of scattering particles by
sizes, which is necessary for the diagnosis or monitoring of a disease.

The homodyne and heterodyne photon-correlation spectrometers, the
laser Doppler anemometers (LDAs), differential LDA schemes, and laser
Doppler microscopes (LDMs), and laser scanning and speckle CMOS-based
full-field imagers have a wide area of medical applications. In particular, they
have been used to investigate eye tissues (cataract diagnosis), hemodynamics
in individual vessels (vessels of eye fundus), and blood microcirculation in
tissues.13,47–51,123–126,132–139

I.9.2 Diffusion wave spectroscopy/diffuse correlation spectroscopy

Diffusion wave spectroscopy (DWS) and diffuse correlation spectroscopy
(DCS) are dynamic light scattering techniques related to the investigation of
the dynamics of particles within very short time intervals.8,13,48,49,51,140–145

A fundamental difference between these techniques and QELSS is that DWS
and DCS are applicable in the case of dense media with multiple scattering,
which is critical for tissues. In contrast to the case of single scattering, the
autocorrelation function of the optical field g1(t) is sensitive to the motion of a
particle on the length scale on the order of l[L/ltr]

–1/2, which is generally much
less than l because L .. ltr (L is the total mean photon path length and ltr is
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the transport length of a photon, ltr ¼ 1∕ðma þ ms0Þ ≈ 1∕m0
sÞ. Thus, DWS/DCS

autocorrelation functions decay much faster than the autocorrelation
functions employed in QELSS.

Experimental implementation of DWS/DCS is very simple. A measuring
system should provide irradiation of an object under study by a CW laser beam
and measurement of intensity fluctuations of the scattered radiation within a
single speckle with the use of a single-mode receiving fiber, photomultiplier,
photon-counting system, and a fast digital correlator working in the
nanosecond range.8,13,140–145 The use of the DWS/DCS technique in medical
applications has been demonstrated for blood microcirculation monitoring in
the human forearm, skeletal muscle, and brain.140–145 The autocorrelation
function slope is the indicative parameter for determination of the blood flow
velocity. The normalized autocorrelation function of field fluctuations can be
represented in terms of two components related to the Brownian and directed
motion of scatterers (erythrocytes or lymphocytes):

g1ðtÞ � expf�2½t∕tB þ ðt∕tsÞ2�L∕ltrg, (I.26)

where t�1
B ¼ j�sj2DB characterizes Brownian motion as t�1

s ≅ 0.18GVj�sjltr (the
directed flow), and GV is the gradient of the flow rate. In Eq. (I.26), directed
flow dependent on t2 is compared to the t dependence for Brownian motion
because particles in flows travel ballistically; also tB and tS appear separately
because the different dynamical processes are uncorrelated.

I.10 Optothermal Spectroscopy and Tomography

I.10.1 Optothermal interactions

The optothermal (OT) or photothermal (PT) method detects the time-
dependent heat generated in a tissue via interaction with pulsed or intensity-
modulated optical radiation.13,52–54,146–155 The thermal waves generated by
the release of heat result in several effects that have given rise to various
imaging techniques: optoacoustics (OA) and photoacoustics (PA); optother-
mal radiometry (OTR) and photothermal radiometry (PTR); and photo-
refractive techniques.13,52–54,146–155 In the past, the term “optoacoustics” was
used to refer primarily to the time-resolved technique utilizing pulsed lasers
and measuring profiles of pressure in tissue, and the term “photoacoustics”
primarily described spectroscopic experiments with CW-modulated light and
a photoacoustic cell. Nowadays, the term “photoacoustics” is much more
frequently used for time-resolved techniques. The informative features of the
PA method allow one to estimate tissue thermal, optical, and acoustical
properties, which depend on tissue structure peculiarities.

In PA techniques, microphone or piezoelectric transducers, which are in
acoustic contact with the sample, are used as detectors to measure the

xliEditor’s Introduction



amplitude or phase of the resultant acoustic wave. In the PTR technique,
distant IR detectors and array cameras are employed for estimation and
imaging of the sample surface temperature. The intensity of the signals
obtained with any of the PT or PA techniques depends on the amount of energy
absorbed and transformed into heat as well as on the thermo-elastic properties
of the sample and its surrounding. When nonradiative relaxation is the main
process in a light beam decay and extinction is not very high, mad,, 1 (d is the
length of a cylinder within the sample occupied by a pulse laser beam), the
absorbed pulse energy induces the local temperature rise, which is defined by

DT ≅ Emad∕cpVr, (I.27)

where cP is the specific heat capacity for a constant pressure, V¼pw2d is the
illuminated volume, w is the laser beam radius, and r is the medium density.
Supposing there is an adiabatic expansion of the illuminated volume upon
being heated at a constant pressure, one can calculate the change of the
volume DV. This expansion induces a wave propagating in the radial direction
at the sound speed, vа. The corresponding change of pressure Dp is
proportional to the amplitude of mechanical oscillations

Dp � ðf a∕wÞðbva∕cPÞEma, (I.28)

where b is the coefficient of volumetric expansion and fа is the frequency of
the acoustic wave.

Equations (I.27) and (I.28) present principles of various PT and PA
techniques. The information about the absorption coefficient ma at the
selected wavelength can be received from direct measurements of the
temperature change DT (optical calorimetry), volume change DV (optogeo-
metric technique), or pressure change Dp (PA technique).

I.10.2 PA technique

For a highly scattering tissue, measurement of the stress-wave profile and
amplitude should be combined with measurement of the total diffuse
reflectance so as to extract separately both the absorption and scattering
coefficients of the sample. The absorption coefficient in a turbid medium can
be estimated from the acoustic transient profile only if the subsurface
irradiance is known. For the turbid media irradiated with a wide laser beam
(more than 0.1 mm), backscattering causes a higher subsurface fluence rate
compared with the incident laser fluence.13 Therefore, the z-axial light
distribution in tissue and the corresponding stress distribution have a complex
profile with a maximum at a subsurface layer. In contrast, when the heating
process is much faster than the medium expansion, then the stress amplitude
adjacent to the irradiated surface dp(0) and the stress exponential tail into the
depth of tissue sample dp(z) can be found.146,147,151 The stress is confined
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temporarily during laser heat deposition when the laser pulse duration is much
shorter than the time of stress propagation across the light penetration depth
in the tissue sample. Such conditions of temporal pressure confinement in the
volume of irradiated tissue allow for the most efficient pressure generation.

I.10.3 PTR technique

The pulse laser heating of a tissue causes perturbations of its temperature and
corresponding modulation of the thermal (infrared) radiation. This pair of
reactions is the basis for pulse photothermal radiometry (PTR).13,52,54,153–155

The maximum intensity of living objects’ thermal radiation approximates a
wavelength of 10 mm. A detailed analysis of PTR signal formation requires
knowledge of the internal temperature distribution within the tissue sample,
tissue thermal diffusivity, and the absorption coefficients at the excitation ma

and emission ma
0 (10 mm) wavelengths. And, working backward, knowledge of

some of the previously mentioned parameters allows one to use a measured
PTR signal to reconstruct, for example, the depth distribution of ma.

The pulse PTR method holds much promise for the study of the optical
and thermal properties of tissues in vitro and in vivo.13,52–54,153–155 For
example, sequences (pairs) of infrared emission images recorded following
pulsed laser irradiation have been used to determine the thermal diffusivity of
biomaterials with high precision.155

I.11 Conclusion

Since publication of the first edition of theHandbook in 2002, optical methods
for biomedical diagnostics have been further developed in many well-
established, now-traditional directions, which were first summarized in the
first edition. In addition, new trends have appeared. In recent years, a number
of handbooks, textbooks, and special issues of journals have been published
that are good companions to the coverage of topics provided in the second
edition of the Handbook.13,83,90,92,93,105,114,117,120,124,126,147,148,156–209

The comprehensive Biomedical Photonics Handbook by Vo-Dinh covers
many topics related to optical biomedical diagnostics, based on a variety of
light–tissue, light–cell, and light–molecular interaction phenomena; it also
includes descriptions of biosensing approaches.159 The second edition of Tissue
Optics by Tuchin mostly concentrates on the optics of soft and hard tissues,
characterization and control of their optical properties, and light-scattering and
coherent-domain methods for biomedical spectroscopy and imaging.13

As an introduction to the field of biomedical optics and biophotonics,
three very enjoyable textbooks by Prasad,161 Wang and Wu,147 and Splinter
and Hooper,165 containing a number of actual examples, problems, and
questions for students, might be recommended.
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Optical coherence tomography is a new trend in biomedical diagnostics that
is continually delivering novel modalities with better facilities in image resolution
and real-time imaging.13,117,119,120,126 The first book on OCT by Bouma and
Tearney,117 a comprehensive review paper by Fercher et al.,119 the second
volume of Tuchin’s two-volume monograph,126 the most recent exciting OCT
book by Drexler and Fujimoto,120 and the special issue of Journal of Biomedical
Optics (JBO) edited by Larin et al.131 summarize and analyze the cutting-edge
OCT technologies and their biomedical applications. A brief overview of OCT
fundamentals, techniques, and applications is provided by Tuchin.13

Another important trend in optical biomedical diagnostics is application of
polarized light for tissue characterization and imaging.114,164,178–180 The
importance of the problem was underlined by the publication of a special issue
of JBO devoted to this topic and edited by Wang et al.,114 a monograph by
Tuchin et al.,164 and a tutorial paper by Ghosh and Vitkin.179 Discussions of
polarized light’s interaction with tissues and applications for diagnostic purposes,
in particular for glucose sensing, are presented in monographs by
Tuchin.13,101,177,178

Further developments of multi-photon excitation microscopy and other
methods of nonlinear microscopy are discussed in the handbook by Masters
and So,90 a book edited by Pavone,92 and a book on SHG imaging by Pavone
and Campagnola.93

Trends in nanobiophotonics as a novel synergetic science underlying
diagnosis, prevention, and treatment of diseases including cancer, systematic
conditions, and inflammatory diseases are overviewed in the special section of
JBO edited by Tuchin et al.171 and in a collective monograph edited by
Tuchin.177

In vivo flow cytometry181–185 and noninvasive blood flow imaging123–125 in
tissues are important directions for research in biomedical diagnostics. A few
overview papers, book chapters, and books are available on blood flow
imaging, published by Leahy and his group.123–125

In the previous edition of the Handbook, a lot of attention was paid to the
characterization of optical properties of biological tissues using innovative
approaches for inverse problem solution. Recent work on this front includes
the collection of new experimental data and their critical analysis for different
tissues in a wide spectral range.186–191

A comprehensive presentation of fundamentals, basic research, and
medical application of biophotonics is provided in a three-volume monograph
edited by Popp et al.192–194 Some practical aspects of optical biomedical
diagnostics and treatments, especially those targeting skin disease and
cosmetology, are discussed in books by Wilhelm et al.,166 Ahluwalia,168

Baron,172 and Querleux.203 Photonics for solution of specific dental problems is
covered in Kishen and Asundi’s book.163 All aspects of glucose noninvasive
optical sensing and its impact on tissues are analyzed in the book by Tuchin.101
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Tissue optical clearing has emerged as a hot topic in the field of optical
biomedical diagnostics owing to the considerably enhanced ability of different
optical methods to suppress light scattering.13,210–240 The book on tissue and
blood optical clearing by Tuchin,212 many recent review
papers,210,211,213,216,218,219,223,240 several book chapters,215,217,220,221,224 and a
special section of JBO214 are devoted to this growing area of research and the
applications of temporal (reversible) control of tissue optical properties using
immersion clearing. Mechanical compression and stretching are also
prospective tools to improve optical imaging and diagnostics as well as the
therapeutic abilities of light.13,212,240–266

Very recently, a brilliant textbook on Quantitative Biomedical Optics
(which, I believe, students will accept with enthusiasm) was published by Bigio
and Fantini.267 Three more special sections of journals on urgent problems of
biomedical optics and biophotonics, with a large number of papers related to
optical biomedical diagnostics and specifically to polarization and optical
clearing methods, were issued.268–270
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Preface

This Handbook is the second edition of the monograph initially published in
2002. The first edition described some aspects of laser–cell and laser–tissue
interactions that are basic for biomedical diagnostics and presented many
optical and laser diagnostic technologies prospective for clinical applications.
The main reason for publishing such a book was the achievements of the last
millennium in light scattering and coherent light effects in tissues, and in the
design of novel laser and photonics techniques for the examination of the
human body. Since 2002, biomedical optics and biophotonics have had rapid
and extensive development, leading to technical advances that increase the
utility and market growth of optical technologies. Recent developments in the
field of biophotonics are wide-ranging and include novel light sources,
delivery and detection techniques that can extend the imaging range and
spectroscopic probe quality, and the combination of optical techniques with
other imaging modalities.

The innovative character of photonics and biophotonics is underlined by
two Nobel prizes in 2014 awarded to Eric Betzig, Stefan W. Hell, and William
E. Moerner “for the development of super-resolved fluorescence microscopy”
and to Isamu Akasaki, Hiroshi Amano, and Shuji Nakamura “for the
invention of efficient blue light-emitting diodes which has enabled bright and
energy-saving white light sources.” The authors of this Handbook have a
strong input in the development of new solutions in biomedical optics and
biophotonics and have conducted cutting-edge research and developments
over the last 10–15 years, the results of which were used to modify and update
early written chapters. Many new, world-recognized experts in the field have
joined the team of authors who introduce fresh blood in the book and provide
a new perspective on many aspects of optical biomedical diagnostics.

The optical medical diagnostic field covers many spectroscopic and laser
technologies based on near-infrared (NIR) spectrophotometry, fluorescence
and Raman spectroscopy, optical coherent tomography (OCT), confocal
microscopy, optoacoustic (photoacoustic) tomography, photon-correlation
spectroscopy and imaging, and Doppler and speckle monitoring of biological
flows.1–45 These topics—as well as the main trends of the modern laser
diagnostic techniques, their fundamentals and corresponding basic research
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on laser–tissue interactions, and the most interesting clinical applications—are
discussed in the framework of this Handbook. The main unique features of
the book are as follows:

1. Several chapters of basic research that discuss the updated results on light
scattering, speckle formation, and other nondestructive interactions of
laser light with tissue; they also provide a basis for the optical and laser
medical diagnostic techniques presented in the other chapters.

2. A detailed discussion of blood optics, blood and lymph flow, and blood-
aggregation measurement techniques, such as the well-recognized laser
Doppler method, speckle technique, and OCT method.

3. A discussion of the most-recent prospective methods of laser (coherent)
tomography and spectroscopy, including OCT, optoacoustic (photoa-
coustic) imaging, diffusive wave spectroscopy (DWS), and diffusion
frequency-domain techniques.

The intended audience of this book consists of researchers, postgraduate
and undergraduate students, biomedical engineers, and physicians who are
interested in the design and applications of optical and laser methods and
instruments for medical science and practice. Due to the large number of
fundamental concepts and basic research on laser–tissue interactions presented
here, it should prove useful for a much broader audience that includes students
and physicians, as well. Investigators who are deeply involved in the field will
find up-to-date results for the topics discussed. Each chapter is written by
representatives of the leading research groups who have presented their classic
and most recent results. Physicians and biomedical engineers may be
interested in the clinical applications of designed techniques and instruments,
which are described in a few chapters. Indeed, laser and photonics engineers
may also be interested in the book because their acquaintance with a new field
of laser and photonics applications can stimulate new ideas for lasers and
photonic devices design. The two volumes of this Handbook contain 21
chapters, divided into four parts (two per volume):

• Part I describes the fundamentals and basic research of the extinction of
light in dispersive media; the structure and models of tissues, cells, and
cell ensembles; blood optics; coherence phenomena and statistical
properties of scattered light; and the propagation of optical pulses and
photon-density waves in turbid media. Tissue phantoms as tools for
tissue study and calibration of measurements are also discussed.

• Part II presents time-resolved (pulse and frequency-domain) imaging
and spectroscopy methods and techniques applied to tissues, including
optoacoustic (photoacoustic) methods. The absolute quantification of
the main absorbers in tissue by a NIR spectroscopy method is discussed.
An example biomedical application—the possibility of monitoring brain
activity with NIR spectroscopy—is analyzed.
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• Part III presents various spectroscopic techniques of tissues based on
elastic and Raman light scattering, Fourier transform infrared (FTIR),
and fluorescence spectroscopies. In particular, the principles and
applications of backscattering diagnostics of red blood cell (RBC)
aggregation in whole blood samples and epithelial tissues are discussed.
Other topics include combined back reflectance and fluorescence, FTIR
and Raman spectroscopies of the human skin in vivo, and fluorescence
technologies for biomedical diagnostics.

• The final section, Part IV, begins with a chapter on laser Doppler
microscopy, one of the representative coherent-domain methods applied
to monitoring blood in motion. Methods and techniques of real-time
imaging of tissue ultrastructure and blood flows using OCT is also
discussed. The section also describes various speckle techniques for
monitoring and imaging tissue, in particular, for studying tissue
mechanics and blood and lymph flow.

Financial support from a FiDiPro grant of TEKES, Finland (40111/11)
and Academic D.I. Mendeleev Fund Program of National Research Tomsk
State University have helped me complete this book project. I greatly
appreciate the cooperation and contribution of all of the authors and co-
editors, who have done a great work on preparation of this book. I would like
to express my gratitude to Eric Pepper and Tim Lamkins for their suggestion
to prepare the second edition of the Handbook and to Scott McNeill for
assistance in editing the manuscript. I am very thankful to all of my colleagues
from the Chair and Research Education Institute of Optics and Biophotonics
at Saratov National Research State University and the Institute of Precision
Mechanics and Control of RAS for their collaboration, fruitful discussions,
and valuable comments. I am very grateful to my wife and entire family for
their exceptional patience and understanding.

Valery V. Tuchin
April 2016
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