APPENDIX A

FOURIER SERIES AND FOURIER INTEGRALS

A. 1 FOURIER SERIES

This section discusses the harmonic analysis of signals and defines the Discrete Fourier Transform (DFT). For reasons which are given below, neither Fourier series nor the DFT are used when analyzing sampled EO imagers. However, the discussion in this section provides background for the Fourier integral theory described in the next section.

Harmonic analysis consists of projecting the observed signal $f(t)$ onto a basis set of orthogonal sine and cosine functions. That is, a series of N sine and cosine functions is used to represent the observed signal. Assume that t is time, and the signal is observed for T seconds. Then the sines and cosines with periods equal to an integer sub-multiple of T seconds form the orthogonal basis set.

$$
\begin{equation*}
f(t) \approx \sum_{k=0}^{N}\left[a_{k} \cos \left(\frac{2 \pi}{T} k t\right)+b_{k} \sin \left(\frac{2 \pi}{T} k t\right)\right] . \tag{A.1}
\end{equation*}
$$

The series in Equation A. 1 is periodic with period T. In most practical cases, $f(t)$ is not periodic. Equation A. 1 gives the Fourier series for the infinitely repeated $f(t)$. See Figure A. 1 for an illustration of this process. The finite, nonperiodic function $f(t)$ is made into a periodic function by replicating copies of itself.

Figure A. 1 The function $f(t)$ is replicated to form an infinitely extended, periodic function. The periodic extension of $f(t)$ often has discontinuities at the boundary between replicas.

The a_{k} and b_{k} coefficients are found by evaluating the following integrals.

$$
\begin{align*}
& a_{k}=\frac{2}{T} \int_{0}^{T} f(t) \cos \left(\frac{2 \pi}{T} k t\right) d t, k=0,1,2,3, \ldots \tag{A.2}\\
& b_{k}=\frac{2}{T} \int_{0}^{T} f(t) \sin \left(\frac{2 \pi}{T} k t\right) d t, k=1,2,3, \ldots .
\end{align*}
$$

Equations A. 1 and A. 2 can be cast in an exponential form which more resembles the Fourier transforms found in this book. The series is:

$$
\begin{equation*}
f(t) \approx \sum_{k=-N / 2}^{N / 2} \alpha_{k} e^{j 2 \pi k t / T} \tag{A.3}
\end{equation*}
$$

where

$$
\begin{equation*}
\alpha_{k}=\frac{1}{T} \int_{-T / 2}^{T / 2} f(t) e^{-j 2 \pi k t / T} d t \text { for } k=0, \pm 1, \pm 2, \pm 3, \ldots \tag{A.4}
\end{equation*}
$$

and the α_{k} are complex numbers.
The Fourier series is a representation or approximation to the function $f(t)$ in the interval $0 \leq t \geq T$. In the frequency domain, each k / T corresponds to a discrete frequency. The function $f(t)$ is made periodic and then decomposed into a set of sinusoidal waves. Equations A. 1 and A. 3 give the Fourier series for the infinitely repeated function.

Trigonometric functions are unique in that uniformly spaced samples over an integer number of periods form an orthogonal basis set. In the above equations, $f(t)$ can be sampled, and the integrals can be turned into sums. Assume that N samples are taken in time T. Then:

$$
\begin{align*}
& a_{k}=\sum_{n=0}^{N-1} f\left(\frac{n T}{N}\right) \cos (2 \pi \quad k n T / N) \text { for } k=0,1,2, . ., N / 2 \\
& b_{k}=\sum_{n=0}^{N-1} f\left(\frac{n T}{N}\right) \sin (2 \pi k n T / N) \text { for } k=0,1,2, . ., N / 2 \tag{A.5}
\end{align*}
$$

The representation of $f(t)$ is now:

$$
\begin{equation*}
f(t) \approx \sum_{k=0}^{N / 2}\left[a_{k} \cos \left(\frac{2 \pi}{T} k t\right)+b_{k} \sin \left(\frac{2 \pi}{T} k t\right)\right] . \tag{A.6}
\end{equation*}
$$

It should be noted that the Equation A. 6 approximation for $f(t)$ is not the same as the Equation A. 1 approximation. In Equation A.6, the a_{k} and b_{k} are found from the sampled values of $f(t)$.

Equations A.2, A.4, and A. 5 represent discrete line spectra, because the a_{k}, b_{k}, and α_{k} are amplitudes of sinusoidal waves. However, Equations A.1, A.3, and A. 6 are continuous representations of $f(t)$. It is often convenient to have discrete versions of both the frequency domain and space or time domain functions. One
might assume that the samples of $f(t)$ [the $f(n T / N)$ samples in Equation A.5] can represent the function in time (space). However, in that case, the time (space) representations do not have an inverse Fourier relationship to the discrete frequency components. Remember that the series representation of $f(t)$ is only an approximation.

However, the discrete time samples which result from sampling Equation A. 6 have the correct relationship to the discrete frequency spectra in Equation A.5. Equations A. 5 and A. 7 form a discrete transform pair. That is, substituting $f^{\prime}(n T / N)$ from Equation A. 7 into Equation A. 5 yields the a_{k} and b_{k} which, when substituted into Equation A.7, yields the $f^{\prime}(n T / N)$ values.

$$
\begin{equation*}
f^{\prime}\left(\frac{n T}{N}\right)=\sum_{k=0}^{N / 2}\left[a_{k} \cos \left(\frac{2 \pi}{N} k n\right)+b_{k} \sin \left(\frac{2 \pi}{N} k n\right)\right] \text { for } n=0,1, \ldots, N-1 . \tag{A.7}
\end{equation*}
$$

The fidelity with which the Fourier series in Equations A.1, A.3, A.6, or A. 7 represents $f(t)$ depends on many factors. Certainly k must be large enough to span the frequency content in $f(t)$. Too few terms in the series leads to errors in the approximation. Also, the Gibb's phenomenon will lead to considerable error in the region of any discontinuity in $f(t)$. Remember that $f(t)$ is made into a periodic function by replicating copies of itself. As illustrated in Figure A.1, there is normally a discontinuity at the border between replicas of $f(t)$. Other errors arise because the Fourier series only represents a finite number of frequencies. Frequencies in $f(t)$ not represented in the series will either "leak" and appear as a wrong frequency component or will not be included in the series representation.

Also, although the discrete transform defined by Equations A. 5 and A. 7 is widely used with sampled data, neither the DFT nor the Fourier series provide insight into the sampling characteristics of the system. The DFT depends on the sample values and does not express the Fourier transform of a sampled version of $f(t)$ in terms of the pre-sample MTF, the sample rate, and the post-sample MTF.

The Fourier integral transform provides a more accurate representation of a non-periodic signal than does the Fourier series. Also, the integral transform provides the flexibility to express the Fourier transform of a sampled $f(t)$ in terms of the pre- and post-sample MTFs and sample rate.

A. 2 FOURIER INTEGRAL

Equations A. 3 and A. 4 are generalized to allow any frequency and to permit $f(t)$ to be non-periodic. The sums become integrals, and the $-T / 2 \leq t \geq T / 2$ interval now extends over all time.

$$
\begin{equation*}
F(\xi)=\int_{-\infty}^{\infty} f(t) e^{-j 2 \pi \xi t} d t \tag{A.8}
\end{equation*}
$$

$$
\begin{equation*}
f(t)=\int_{-\infty}^{\infty} F(\xi) e^{j 2 \pi \xi t} d f \tag{A.9}
\end{equation*}
$$

Equations A. 8 and A. 9 define the Fourier integral transform pair, where ξ is frequency in Hertz. If t represents angle in milliradians rather than time, then ξ is frequency in cycles per milliradian. If t represents a spatial coordinate in units of millimeters, then ξ is frequency in cycles per millimeter.

The condition for existence of $F(\xi)$ is generally given as:

$$
\begin{equation*}
\int_{-\infty}^{\infty}|f(t)| d t<\infty \tag{A.10}
\end{equation*}
$$

or, in other words, $f(t)$ must be absolutely integrable. However, Equation A. 10 is sufficient but not necessary; $f(t)$ often exists even if this condition is not met.

Three properties of the Fourier transform are used often in this book. The first property is linearity. If $F(\xi)$ is the Fourier transform of $f(t)$, and $G(\xi)$ is the Fourier transform of $g(t)$, then the Fourier transform of $[f(t)+g(t)]$ is $[F(\xi)+$ $G(\xi)]$. The second property is time-shifting. If $F(\xi)$ is the Fourier transform of $f(t)$, then the Fourier transform of $f(t-\tau)$ is $F(\xi) e^{-j 2 \pi \xi \tau}$.

The third property is that if $f(x, y)$ is separable, then the Fourier transform of $f(x, y)$ is separable. That is, if:

$$
\begin{equation*}
f(x, y)=g(x) h(y) \tag{A.11}
\end{equation*}
$$

then

$$
\begin{equation*}
F(\xi, \eta)=G(\xi) H(\eta) \tag{A.12}
\end{equation*}
$$

Another theorem used throughout the book is that a convolution in the space domain is a multiplication in the frequency domain. That is:

If $h(t)=\int_{-\infty}^{\infty} f(\tau) g(\tau-t) d \tau$
then $H(\xi)=F(\xi) G(\xi)$.
An asterisk is used in this book to represent convolution. For example, $h(t)=f(t)$ * $g(t)$.

Some Fourier transform pairs are shown in the figures below. The symbol \Leftrightarrow indicates the transform pair relationship. In Figure A.2, the transform of a rect function is a sinc function. In Figure A.3, the transform of a constant is a delta function. In Figure A.4, the transform of a Gaussian is a Gaussian.

$f(t)=A \quad|t|\langle T$

$$
\begin{aligned}
& =A \quad|t|<I \\
& =\frac{A}{2}|t|=T \quad \Leftrightarrow \quad F(\xi)=2 A T \frac{\sin (2 \pi \xi T)}{2 \pi \xi T}
\end{aligned}
$$

$$
=0 \quad|t|\rangle T
$$

Figure A. 2 Rect and sinc wave transform pair.

$$
f(t)=k
$$

$$
\Leftrightarrow
$$

freq
$F(\xi)=k \delta(\xi)$

Figure A. 3 The transform of a constant is a delta function centered at the frequency origin.

$$
f(t)=\left(\frac{\alpha}{\pi}\right)^{1 / 2} e^{-\alpha t^{2}} \quad \Leftrightarrow \quad F(\xi)=e^{\pi^{2} \xi^{2} / \alpha}
$$

Figure A. 4 The transform of a Gaussian is a Gaussian.

APPENDIX B

THE IMPULSE FUNCTION

B. 1 DEFINITION

The impulse function is also known as the Dirac delta function. It can be described as a function that has an infinite height, zero width and an area equal to unity. Mathematically, the impulse function is defined by Equation B.1.

$$
\begin{equation*}
\int_{-\infty}^{\infty} \delta\left(x-x_{0}\right) f(x) d x=f\left(x_{0}\right) \tag{B.1}
\end{equation*}
$$

For practical purposes, we can define $\delta(x)$ as follows.

$$
\begin{equation*}
\delta(x)=\lim _{b \rightarrow 0} \frac{1}{|b|} \operatorname{Gauss}\left(\frac{x}{b}\right) . \tag{B.2}
\end{equation*}
$$

The area under the Gaussian function must remain unity as b gets smaller, so the height of the function increases as shown in Figure B.1. The practical definition given in Equation B. 2 could have used the rectangle or a number of other shapes. The important concept is that the impulse function has zero width but unity area.

B. 2 PROPERTIES OF THE IMPULSE FUNCTION

There are a few important properties of the impulse response that are used frequently throughout this text. One of the defining properties of the impulse function is

$$
\begin{equation*}
\delta\left(x-x_{o}\right)=0, x \neq x_{o} \tag{B.3}
\end{equation*}
$$

so that the only location where the impulse function has a non-zero value is at the location of the impulse function. Another defining property is the integral property of the impulse function

$$
\begin{equation*}
\int_{-\infty}^{\infty} \delta\left(x-x_{o}\right) d x=1 \tag{B.4}
\end{equation*}
$$

which simply states that the area of an impulse function is 1 . The sifting property is described as such because the impulse function "sifts" out the value of a function at a particular point

$$
\begin{equation*}
\int_{x_{1}}^{x_{2}} f(x) \delta\left(x-x_{o}\right) d x=f\left(x_{o}\right) \quad x_{1}<x_{o}<x_{2} \tag{B.5}
\end{equation*}
$$

The impulse function is an even function, so that

$$
\begin{equation*}
\delta(x)=\delta(-x) \tag{B.6}
\end{equation*}
$$

The comb function is an infinite set of equally spaced delta functions. The comb function has been described with many different notations including Bracewell's "shah" function. The Fourier transform of a comb function in space is a comb function in frequency. If X is the spacing between delta functions, then

$$
\begin{equation*}
\sum_{n=-\infty}^{\infty} \delta(x-n X) \Leftrightarrow \sum_{n=-\infty}^{\infty} \delta(\xi-n / X) \tag{B.7}
\end{equation*}
$$

where \Leftrightarrow indicates a Fourier transform pair.

Figure B. 1 As the width of the Gaussian decreases, the height increases in order to maintain the area under the curve at unity.

INDEX

Aberrations, 2, 24, 28
Active area of detector (also see fill factor), 2-3, 25
Airy disc, 29
Aliasing (also see spurious response), 5, 46, 51, 93
Ambient optical flow, 130
Artifacts (see sampling artifacts)
Atmosphere, 89
Band-limited function, 13, 141, 143, 145
Bar pattern, 88, 143, 147, 152
Baseband spectrum, 51
Bilinear interpolation, 12, 77-84
Camera, 2
Cartesian coordinates, 28, 46
Cathode ray tube, 37
Causality, 41
Classical design criteria, 85
Comb of delta functions, 50
Constant parameter systems, 11
Contrast transfer function, 150
Convolution kernels, 79-84
Convolution, 24
Correctability, 159
Correlation, 132
CRT raster (see raster and cathode ray tube)
Cycles on target, 89-91
Delta function (also see impulse function), 17, 50, 171
Design examples, 96-107
Detection, 88
Detector angular subtense (DAS), 35

Detector array (also see focal plane array), 3
Diagonal dither, 117
Diffraction (see modulation transfer function-diffraction)
Direction averagers, 156
Discrete Fourier transform (also see Fourier series), 127, 165
Discrete interpolation functions, 84
Discrimination tasks (see task performance metrics)
Display as a filter, 17
Display filtering (see display pixels)
Display MTF (see display pixels and modulation transfer function-display)
Display pixel-rectangular, 4, 73, 101
Display pixels-Gaussian, 73
Display pixels: effect of shape and size, $5,14,37,50,53,144$
Display, 3
Displayed frequency spectrum (see display pixels and Fourier transform of sampled image)
Displayed image, 49
Dither mirror, 111, 120
Dither, 111, 125, 130
Dither for static scene, 114
Dynamic MRT, 148, 162
Dynamic sampling, 125, 130
Edge spread function, 151
Effect of changing sample rate, 56
Electronic filtering (see MTF electronics)
Equivalent Blur, 96

Eye blur (also see modulation
transfer function-eye), 5
Fidelity, 13, 17
Field, 111
Fill factor, 3
Flat panel displays, 74, 101
Focal plane array (FPA), 2, 14, 25, 111
Fourier domain filtering, 25
Fourier integral transform, 23, 127, 167
Fourier series, 165
Fourier transform of delta function, 18
Fourier transform of sampled function, 14,17
Fourier transform of sampled image, $17,18,21$
Fourier transform of samples, 17
Frame, 111
Generalized motion estimation, 134
Geometric image, 136
Gradient estimation, 132
Half-sample limit, 77, 88, 91, 92, 95
Half-sample rate, 145
Hot-spot detection, 94
Human performance (see task performance metrics)

Ideal filters, 139, 145
Identification performance, 88,89 , 94, 107
Image phase, 133
Image reconstruction (see reconstruction)
Image restoration, 136
Imaging system performance (see task performance metrics)
Impulse function, 23, 41, 52, 171
In-band aliasing, 68, 93, 120
In-band spurious response, 68, 94
In-band spurious response ratio, 68

Inhomogeneity equivalent
temperature difference, 147,159
InSb imager, 121
Integrate and hold circuit, 35
Interlace, 111, 124
Interpolation function, 73-85
Interpolation kernels, 81
Isoplanatic, 24
Johnson criteria, 88-92
Kell factor, 84, 87
Laboratory measurements, 147
Leqault's criterion, 86
Line spread function, 151
Linear interpolation, 12, 79, 84
Linear superposition (see superposition)
Linear, 23
Linearity, 7
LSI system, 8, 10, 26
Maximum likelihood, 133
Microscan (see dither)
Microscan mirror, 111
Minimum resolvable contrast, 88
Minimum resolvable temperature difference measurement, 88, 147, 152, 161
Modulation transfer function, 25, 147, 162
Modulation transfer functiondetector, 25, 34, 129
Modulation transfer functiondiffraction, 2, 28, 32
Modulation transfer functiondisplay, 14, 21, 25, 38, 45, 50, 52, 74, 76
Modulation transfer functionelectronics, 36, 40
Modulation transfer function-eye, 38, 52, 74, 76, 101
Modulation transfer functioninterpolation, 76, 83

Modulation transfer functionmeasurement, 150
Modulation transfer functionoptics, 32
Modulation transfer function-postsample, 76
Motion artifacts, 122-123
Motion blur, 35
MTF squeeze, 92, 94
Nodding mirror, 111
Noise equivalent temperature difference measurement, 147, 149
Non-interlace operation, 123
Non-sampled imagers, 45
Non-separable functions, 29, 117
Non-shift invariant, 17, 53
One-dimensional analysis, 28
Optical aberrations (see aberrations)
Optical flow, 125, 134
Optical transfer function (OTF), 7
Optimum sampling, 6, 84
Out-of-band aliasing, 68, 93
Out-of-band spurious response, 68, 73, 84, 94
Out-of-band spurious response ratio, 68
Output spectrum, 20
Parallel scan thermal imagers, 35
Phase correlation, 133
Phase transfer function, 25
Photo-current, 2
Photo-detection, 2
Photo-electron, 2
Pixel replication, 5, 74, 79, 84
Pixelated display, 7
Point spread function (psf), 23, 25, $31,45,52,126,152$
Polar coordinates, 28
Post-sample MTF, or blur, 5, 45
Power spectral density, 136

Pre-sample MTF, or blur, 3, 4, 14, 45, 119
Pseudo-image, 126, 136
Random spatio-temporal noise, 158
Raster, 7, 46, 51, 87, 95
Recognition performance, 88, 94, 107
Reconstructing bar pattern image, 143
Reconstruction, 3, 5, 12-14, 50, 73, 77
Reconstruction function, 13, 14, 17, 78
Reconstruction with sampling theorem, 140
Rect (rectangular) function, 14, 36, 139
Rectangular display element, 37
Replicated spectra, 50-51
Replication (see pixel replication)
Resolution enhancement, 125
Resolution, 119, 147, 150
Resolved cycles (see cycles on target)
Response function, 45, 52
Sample and hold, 8
Sample function, 141
Sample imager performance measurements, 153
Sample interval, 14, 21, 45, 46, 52, 53
Sample phase, 21, 49, 52
Sample point, 49
Sample rate, 13
Sample spacing (see sample interval)
Sampled imager design, 73
Sampled imager optimization, 73, 95
Sampled imager response function, 45, 52, 54
Sampled Imager, 2, 45, 92
Sampled spectrum, 52-56, 74

Samples per IFOV, 36
Sampling artifacts, $6,45,50,51,52$, 92
Sampling limitations, 126
Sampling process, $4,14,17,21,50$
Sampling replicas (see replicated spectra)
Sampling Theorem, 88, 139
Sampling Theorem misconceptions, 139, 143-145
Scanning slit MTF, 160
Scene function, 126
Scene-to-sensor motion, 122
Schade's criterion, 84-86
Sensitivity, 119, 148
Separability, 28, 46, 117
Sequin's criterion, 84, 87-88
Shift estimation, 130
Shift invariance, 7-10, 17, 23
Sinc wave, 13, 140
Slit response, 151
Sombrero function (somb), 29
Spatial domain filtering, 26
Spatial filter, 24
Spatio-temporal noise parameter, 148
Spurious response (also see aliasing), 51-53, 73, 82
Spurious response ratio, 68
Spurious response terms, 54
Standard video, 112
Staring array imager, 2, 105
Steady state analysis, 10
Super-resolution edge spread function, 161
Super-resolution, 125
Superposition, 7, 24
System amplitude response, 52
System intensity transfer function, 149
System magnification, 53
System noise, 148
System response function, 7
System transfer function (see transfer response)

Task performance metrics, 54, 8695, 107, 152, 161
Television resolution (also see Kell factor), 87
Temporal filters, 40
Three-dimensional noise, 147, 156, 157
Tilted edge spread function, 161
Transfer function (see transfer response)
Transfer function of eye (see modulation transfer functioneye)
Transfer response, 7, 10, 11, 17, 31, 50, 53, 82, 119
Transfer response of sampled imager, 45
Translation phase term, 20
Undersampled imager, 6, 119, 120
Unity magnification, 23
Video display rates, 112
Video interlace (see interlace)
Video raster (see raster)
Visible display raster (see raster)
Weiner filter spectral response, 137
Weiner restoration filter, 136
Well-corrected optical system, 25
Well-sampled imager, 6, 120

Mr. Richard H. Vollmerhausen currently heads the Model Development Branch at the US Army's Night Vision Lab. The branch is updating the Army's target acquisition models to include the effect of sampling on performance and to make other model enhancements in order to predict the performance of advanced technology sensors. During his tenure at NVL, he was a project engineer and EO systems analyst for numerous Army weapon systems. His previous work included designing air-to-air missile seekers for the Navy and working as an Instrumentation Engineer for Douglas Aircraft on the Saturn/Apollo Program. Mr. Vollmerhausen is the author of two books on electro-optical systems analysis and has published numerous journal and symposium papers.

Dr. Ronald G. Driggers has 12 years of electro-optics experience and has worked for or consulted to Lockheed Martin, SAIC, EOIR Measurements, Amtec Corporation, Joint Precision Strike Demonstration Project Office, and Redstone Technical Test Center. He is currently working for the US Army's Night Vision and Electronic Sensors Directorate and is the U.S. representative to the NATO panel on advanced thermal imager characterization. Dr. Driggers is the author of two books on infrared and electrooptics systems and has published over 30 refereed journal papers. He is editor of Marcel Dekker's Encyclopedia of Optical Engineering and is an Associate Editor of Optical Engineering.

