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APPENDIX A 
FOURIER SERIES AND FOURIER INTEGRALS 
 
A.1 FOURIER SERIES 
 
This section discusses the harmonic analysis of signals and defines the Discrete 
Fourier Transform (DFT). For reasons which are given below, neither Fourier 
series nor the DFT are used when analyzing sampled EO imagers. However, the 
discussion in this section provides background for the Fourier integral theory 
described in the next section. 
  Harmonic analysis consists of projecting the observed signal f(t) onto a basis 
set of orthogonal sine and cosine functions. That is, a series of N sine and cosine 
functions is used to represent the observed signal. Assume that t is time, and the 
signal is observed for T seconds. Then the sines and cosines with periods equal to 
an integer sub-multiple of T seconds form the orthogonal basis set. 
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 The series in Equation A.1 is periodic with period T. In most practical cases, 
f(t) is not periodic. Equation A.1 gives the Fourier series for the infinitely 
repeated f(t). See Figure A.1 for an illustration of this process. The finite, non-
periodic function f(t) is made into a periodic function by replicating copies of 
itself. 
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Figure A.1  The function f(t) is replicated to form an infinitely extended, periodic 
function. The periodic extension of f(t) often has discontinuities at the boundary between 
replicas. 
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 The ak and bk coefficients are found by evaluating the following integrals.  
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 Equations A.1 and A.2 can be cast in an exponential form which more 
resembles the Fourier transforms found in this book. The series is: 

/ 2
2 /

/ 2

( )
N

j kt T
k

k N

f t e π

=−

≈ α    (A.3) 

where 

/ 2
2 /

/ 2

1
( ) 0, 1, 2, 3, . . .

T
j kt T

k

T

f t e dt for k
T

− π

−

α = = ± ± ±   (A.4) 

and the αk are complex numbers. 
 The Fourier series is a representation or approximation to the function f(t) in 
the interval 0 ≤ t ≥ T. In the frequency domain, each k/T corresponds to a discrete 
frequency. The function f(t) is made periodic and then decomposed into a set of 
sinusoidal waves. Equations A.1 and A.3 give the Fourier series for the infinitely 
repeated function.  
 Trigonometric functions are unique in that uniformly spaced samples over an 
integer number of periods form an orthogonal basis set. In the above equations, 
f(t) can be sampled, and the integrals can be turned into sums. Assume that N 
samples are taken in time T. Then: 

1

0

1

0

( ) cos(2 / ) 0, 1, 2, .., / 2

( )sin(2 / ) 0, 1, 2, .., / 2.

N

k
n

N

k
n

nT
a f knT N for k N

N

nT
b f knT N for k N

N

−

=

−

=

= π =

= π =




  (A.5) 

The representation of f(t) is now: 
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It should be noted that the Equation A.6 approximation for f(t) is not the same as 
the Equation A.1 approximation. In Equation A.6, the ak and bk are found from 
the sampled values of f(t).  
 Equations A.2, A.4, and A.5 represent discrete line spectra, because the ak, 
bk, and αk are amplitudes of sinusoidal waves. However, Equations A.1, A.3, and 
A.6 are continuous representations of f(t). It is often convenient to have discrete 
versions of both the frequency domain and space or time domain functions. One 
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might assume that the samples of f(t) [the f(nT/N) samples in Equation A.5] can 
represent the function in time (space). However, in that case, the time (space) 
representations do not have an inverse Fourier relationship to the discrete 
frequency components. Remember that the series representation of f(t) is only an 
approximation.  
 However, the discrete time samples which result from sampling Equation A.6 
have the correct relationship to the discrete frequency spectra in Equation A.5. 
Equations A.5 and A.7 form a discrete transform pair. That is, substituting 
f’(nT/N) from Equation A.7 into Equation A.5 yields the ak and bk which, when 
substituted into Equation A.7, yields the f ′(nT/N) values. 
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 The fidelity with which the Fourier series in Equations A.1, A.3, A.6, or A.7 
represents f(t) depends on many factors. Certainly k must be large enough to span 
the frequency content in f(t). Too few terms in the series leads to errors in the 
approximation. Also, the Gibb’s phenomenon will lead to considerable error in 
the region of any discontinuity in f(t). Remember that f(t) is made into a periodic 
function by replicating copies of itself. As illustrated in Figure A.1, there is 
normally a discontinuity at the border between replicas of f(t). Other errors arise 
because the Fourier series only represents a finite number of frequencies. 
Frequencies in f(t) not represented in the series will either “leak” and appear as a 
wrong frequency component or will not be included in the series representation. 
 Also, although the discrete transform defined by Equations A.5 and A.7 is 
widely used with sampled data, neither the DFT nor the Fourier series provide 
insight into the sampling characteristics of the system. The DFT depends on the 
sample values and does not express the Fourier transform of a sampled version of 
f(t) in terms of the pre-sample MTF, the sample rate, and the post-sample MTF.  
 The Fourier integral transform provides a more accurate representation of a 
non-periodic signal than does the Fourier series. Also, the integral transform 
provides the flexibility to express the Fourier transform of a sampled f(t) in terms 
of the pre- and post-sample MTFs and sample rate. 
 
A.2 FOURIER INTEGRAL 
 
Equations A.3 and A.4 are generalized to allow any frequency and to permit f(t) 
to be non-periodic. The sums become integrals, and the -T/2 ≤ t ≥ T/2 interval 
now extends over all time.  
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Equations A.8 and A.9 define the Fourier integral transform pair, where ξ is 
frequency in Hertz. If t represents angle in milliradians rather than time, then ξ is 
frequency in cycles per milliradian. If t represents a spatial coordinate in units of 
millimeters, then ξ is frequency in cycles per millimeter. 
 The condition for existence of F(ξ) is generally given as: 
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or, in other words, f(t) must be absolutely integrable. However, Equation A.10 is 
sufficient but not necessary; f(t) often exists even if this condition is not met. 
 Three properties of the Fourier transform are used often in this book. The 
first property is linearity. If F(ξ) is the Fourier transform of f(t), and G(ξ) is the 
Fourier transform of g(t), then the Fourier transform of [f(t) + g(t)] is [F(ξ) + 
G(ξ)]. The second property is time-shifting. If F(ξ) is the Fourier transform of 
f(t), then the Fourier transform of f(t-τ) is F(ξ)e-j2πξτ.   
 The third property is that if f(x,y) is separable, then the Fourier transform of 
f(x,y) is separable. That is, if: 
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 Another theorem used throughout the book is that a convolution in the space 
domain is a multiplication in the frequency domain. That is: 
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An asterisk is used in this book to represent convolution. For example, h(t) = f(t) 

* g(t). 
 Some Fourier transform pairs are shown in the figures below. The symbol ⇔ 
indicates the transform pair relationship. In Figure A.2, the transform of a rect 
function is a sinc function. In Figure A.3, the transform of a constant is a delta 
function. In Figure A.4, the transform of a Gaussian is a Gaussian. 
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Figure A.2   Rect and sinc wave transform pair.  
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Figure A.3  The transform of a constant is a delta function centered at the frequency 
origin. 
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Figure A.4   The transform of a Gaussian is a Gaussian. 
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APPENDIX B 
THE IMPULSE FUNCTION  
 
B.1  DEFINITION 
 
The impulse function is also known as the Dirac delta function. It can be 
described as a function that has an infinite height, zero width and an area equal to 
unity. Mathematically, the impulse function is defined by Equation B.1. 
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 For practical purposes, we can define δ(x) as follows. 
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 The area under the Gaussian function must remain unity as b gets smaller, so 
the height of the function increases as shown in Figure B.1. The practical 
definition given in Equation B.2 could have used the rectangle or a number of 
other shapes. The important concept is that the impulse function has zero width 
but unity area.  
 
B.2  PROPERTIES OF THE IMPULSE FUNCTION 
 
There are a few important properties of the impulse response that are used 
frequently throughout this text. One of the defining properties of the impulse 
function is  

( ) 0ox xδ − = , ox x≠  (B.3) 

so that the only location where the impulse function has a non-zero value is at the 
location of the impulse function. Another defining property is the integral 
property of the impulse function 

( ) 1ox x dx
∞
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which simply states that the area of an impulse function is 1. The sifting property 
is described as such because the impulse function "sifts" out the value of a 
function at a particular point 
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 The impulse function is an even function, so that  

( ) ( )x xδ = δ − . (B.6) 

 The comb function is an infinite set of equally spaced delta functions. The 
comb function has been described with many different notations including 
Bracewell’s "shah" function. The Fourier transform of a comb function in space 
is a comb function in frequency. If X is the spacing between delta functions, then 
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Figure B.1  As the width of the Gaussian decreases, the height increases in order to 
maintain the area under the curve at unity. 
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INDEX 

 
Aberrations, 2, 24, 28 
Active area of detector (also see fill 

factor), 2-3, 25 
Airy disc, 29 
Aliasing (also see spurious 

response), 5, 46, 51, 93 
Ambient optical flow, 130 
Artifacts (see sampling artifacts) 
Atmosphere, 89 
 
Band-limited function, 13, 141, 143, 

145 
Bar pattern, 88, 143, 147, 152 
Baseband spectrum, 51 
Bilinear interpolation, 12, 77-84 
 
Camera, 2 
Cartesian coordinates, 28, 46 
Cathode ray tube, 37  
Causality, 41 
Classical design criteria, 85 
Comb of delta functions, 50 
Constant parameter systems, 11 
Contrast transfer function, 150 
Convolution kernels, 79-84 
Convolution, 24 
Correctability, 159 
Correlation, 132 
CRT raster (see raster and cathode 

ray tube)  
Cycles on target, 89-91 
 
Delta function (also see impulse 

function), 17, 50, 171 
Design examples, 96-107 
Detection, 88 
Detector angular subtense (DAS), 

35 

 
Detector array (also see focal plane 

array), 3 
Diagonal dither, 117 
Diffraction (see modulation transfer 

function—diffraction) 
Direction averagers, 156 
Discrete Fourier transform (also see 

Fourier series), 127, 165 
Discrete interpolation functions, 84 
Discrimination tasks (see task 

performance metrics) 
Display as a filter, 17 
Display filtering (see display pixels) 
Display MTF (see display pixels 

and modulation transfer 
function—display) 

Display pixel—rectangular, 4, 73, 
101 

Display pixels—Gaussian, 73 
Display pixels: effect of shape and 

size, 5, 14, 37, 50, 53, 144 
Display, 3 
Displayed frequency spectrum (see 

display pixels and Fourier 
transform of sampled image) 

Displayed image, 49 
Dither mirror, 111, 120 
Dither, 111, 125, 130 
Dither for static scene, 114 
Dynamic MRT, 148, 162 
Dynamic sampling, 125, 130 
 
Edge spread function, 151 
Effect of changing sample rate, 56 
Electronic filtering (see MTF –  
 electronics) 
Equivalent Blur, 96 
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Eye blur (also see modulation 
transfer function—eye), 5 

 
Fidelity, 13, 17 
Field, 111 
Fill factor, 3 
Flat panel displays, 74, 101 
Focal plane array (FPA), 2, 14, 25, 

111 
Fourier domain filtering, 25 
Fourier integral transform, 23, 127, 

167 
Fourier series, 165 
Fourier transform of delta function, 

18 
Fourier transform of sampled 

function, 14, 17 
Fourier transform of sampled image, 

17, 18, 21 
Fourier transform of samples, 17 
Frame, 111 
 
Generalized motion estimation, 134 
Geometric image, 136 
Gradient estimation, 132 
 
Half-sample limit, 77, 88, 91, 92, 95 
Half-sample rate, 145 
Hot-spot detection, 94 
Human performance (see task 

performance metrics) 
 
Ideal filters, 139, 145 
Identification performance, 88, 89, 

94, 107 
Image phase, 133 
Image reconstruction  (see 

reconstruction) 
Image restoration, 136 
Imaging system performance (see 

task performance metrics) 
Impulse function, 23, 41, 52, 171 
In-band aliasing, 68, 93, 120 
In-band spurious response, 68, 94 
In-band spurious response ratio, 68 

Inhomogeneity equivalent 
temperature difference, 147, 159 

InSb imager, 121 
Integrate and hold circuit, 35 
Interlace, 111, 124 
Interpolation function, 73-85 
Interpolation kernels, 81 
Isoplanatic, 24 
 
Johnson criteria, 88-92 
 
Kell factor, 84, 87 
 
Laboratory measurements, 147 
Leqault's criterion, 86 
Line spread function, 151 
Linear interpolation, 12, 79, 84 
Linear superposition (see 

superposition) 
Linear, 23 
Linearity, 7 
LSI system, 8, 10, 26 
 
Maximum likelihood, 133 
Microscan (see dither) 
Microscan mirror, 111 
Minimum resolvable contrast, 88 
Minimum resolvable temperature 

difference measurement, 88, 
147, 152, 161 

Modulation transfer function, 25, 
147, 162 

Modulation transfer function— 
detector, 25, 34, 129 

Modulation transfer function— 
diffraction, 2, 28, 32 

Modulation transfer function—
display, 14, 21, 25, 38, 45, 50, 
52, 74, 76 

Modulation transfer function—
electronics, 36, 40 

Modulation transfer function—eye, 
38, 52, 74, 76, 101 

Modulation transfer function— 
interpolation, 76, 83 
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Modulation transfer function—
measurement, 150 

Modulation transfer function— 
optics, 32 

Modulation transfer function—post-
sample, 76 

Motion artifacts, 122-123 
Motion blur, 35 
MTF squeeze, 92, 94 
 
Nodding mirror, 111 
Noise equivalent temperature 

difference measurement, 147, 
149 

Non-interlace operation, 123 
Non-sampled imagers, 45 
Non-separable functions, 29, 117 
Non-shift invariant, 17, 53 
 
One-dimensional analysis, 28 
Optical aberrations (see aberrations) 
Optical flow, 125, 134 
Optical transfer function (OTF), 7 
Optimum sampling, 6, 84 
Out-of-band aliasing, 68, 93 
Out-of-band spurious response, 68, 

73, 84, 94 
Out-of-band spurious response ratio, 

68 
Output spectrum, 20 
 
Parallel scan thermal imagers, 35 
Phase correlation, 133 
Phase transfer function, 25 
Photo-current, 2 
Photo-detection, 2 
Photo-electron, 2 
Pixel replication, 5, 74, 79, 84 
Pixelated display, 7 
Point spread function (psf), 23, 25, 

31, 45, 52, 126, 152 
Polar coordinates, 28 
Post-sample MTF, or blur, 5, 45 
Power spectral density, 136 

Pre-sample MTF, or blur, 3, 4, 14, 
45, 119 

Pseudo-image, 126, 136 
 
Random spatio-temporal noise, 158 
Raster, 7, 46, 51, 87, 95 
Recognition performance, 88, 94, 

107 
Reconstructing bar pattern image, 

143 
Reconstruction, 3, 5, 12-14, 50, 73, 

77 
Reconstruction function, 13, 14, 17, 

78 
Reconstruction with sampling 

theorem, 140 
Rect (rectangular) function, 14, 36, 

139 
Rectangular display element, 37 
Replicated spectra, 50-51 
Replication (see pixel replication) 
Resolution enhancement, 125 
Resolution, 119, 147, 150 
Resolved cycles (see cycles on 

target) 
Response function, 45, 52 
 
Sample and hold, 8 
Sample function, 141 
Sample imager performance 

measurements, 153 
Sample interval, 14, 21, 45, 46, 52, 

53 
Sample phase, 21, 49, 52 
Sample point, 49 
Sample rate, 13 
Sample spacing (see sample 

interval) 
Sampled imager design, 73 
Sampled imager optimization, 73, 

95 
Sampled imager response function, 

45, 52, 54 
Sampled Imager, 2, 45, 92 
Sampled spectrum, 52-56, 74 
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Samples per IFOV, 36 
Sampling artifacts, 6, 45, 50, 51, 52, 

92 
Sampling limitations, 126 
Sampling process, 4, 14, 17, 21, 50 
Sampling replicas (see replicated 

spectra) 
Sampling Theorem, 88, 139 
Sampling Theorem misconceptions, 

139, 143-145 
Scanning slit MTF, 160 
Scene function, 126 
Scene-to-sensor motion, 122 
Schade's criterion, 84-86 
Sensitivity, 119, 148 
Separability, 28, 46, 117 
Sequin's criterion, 84, 87-88 
Shift estimation, 130 
Shift invariance, 7-10, 17, 23 
Sinc wave, 13, 140 
Slit response, 151 
Sombrero function (somb), 29 
Spatial domain filtering, 26 
Spatial filter, 24 
Spatio-temporal noise parameter, 

148 
Spurious response (also see 

aliasing), 51-53, 73, 82 
Spurious response ratio, 68 
Spurious response terms, 54 
Standard video, 112 
Staring array imager, 2, 105 
Steady state analysis, 10 
Super-resolution edge spread 

function, 161 
Super-resolution, 125 
Superposition, 7, 24 
System amplitude response, 52 
System intensity transfer function, 

149 
System magnification, 53 
System noise, 148 
System response function, 7 
System transfer function (see 

transfer response) 

 
Task performance metrics, 54, 86-

95, 107, 152, 161 
Television resolution (also see Kell 

factor), 87 
Temporal filters, 40 
Three-dimensional noise, 147, 156, 

157 
Tilted edge spread function, 161 
Transfer function (see transfer 

response) 
Transfer function of eye (see 

modulation transfer function— 
eye) 

Transfer response, 7, 10, 11, 17, 31, 
50, 53, 82, 119  

Transfer response of sampled 
imager, 45 

Translation phase term, 20 
 
Undersampled imager, 6, 119, 120 
Unity magnification, 23 
 
Video display rates, 112 
Video interlace (see interlace) 
Video raster (see raster) 
Visible display raster (see raster) 
 
Weiner filter spectral response, 137 
Weiner restoration filter, 136 
Well-corrected optical system, 25 
Well-sampled imager, 6, 120 
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