Field Guide to

Visual and Ophthalmic Optics Jim Schwiegerling University of Arizona

SPIE Field Guides Volume FG04

John E. Greivenkamp, Series Editor

Library of Congress Cataloging-in-Publication Data

Schwiegerling, Jim.
Field guide to visual and ophthalmic optics / Jim Schwiegerling.
p. cm.
Includes bibliographical references and index.
ISBN 0-8194-5629-2
1. Physiological optics. I. Title.

QP475.S385 2004 612.8'4--dc22

2004020668

Published by

SPIE P.O. Box 10 Bellingham, Washington 98227-0010 USA Phone: +1 360 676 3290 Fax: +1 360 647 1445 Email: Books@spie.org www.spie.org

Copyright @ 2004 Society of Photo-Optical Instrumentation Engineers

All rights reserved. No part of this publication may be reproduced or distributed in any form or by any means without written permission of the publisher.

The content of this book reflects the work and thought of the author(s). Every effort has been made to publish reliable and accurate information herein, but the publisher is not responsible for the validity of the information or for any outcomes resulting from reliance thereon.

Printed in the United States of America.

Second printing

Welcome to the SPIE Field Guides-a series of publications written directly for the practicing engineer or scientist. Many textbooks and professional reference books cover optical principles and techniques in depth. The aim of the SPIE Field Guides is to distill this information, providing readers with a handy desk or briefcase reference that provides basic, essential optical principles, information about techniques. or phenomena, including definitions and descriptions, kev equations. illustrations. application examples. design considerations, and additional resources. A significant effort will be made to provide a consistent notation and style between volumes in the series.

Each *SPIE Field Guide* addresses a major field of optical science and technology. The concept of these *Field Guides* is a formatintensive presentation based on figures and equations supplemented by concise explanations. In most cases, this modular approach places a single topic on a page, and provides full coverage of that topic on that page. Highlights, insights, and rules of thumb are displayed in sidebars to the main text. The appendices at the end of each *Field Guide* provide additional information such as related material outside the main scope of the volume, key mathematical relationships, and alternative methods. While complete in their coverage, the concise presentation may not be appropriate for those new to the field.

The *SPIE Field Guides* are intended to be living documents. The modular page-based presentation format allows them to be easily updated and expanded. We are interested in your suggestions for new *Field Guide* topics as well as what material should be added to an individual volume to make these *Field Guides* more useful to you. Please contact us at **fieldguides@SPIE.org.**

John E. Greivenkamp, *Series Editor* Optical Sciences Center The University of Arizona Keep information at your fingertips with all of the titles in the Field Guide Series:

Field Guide to Geometrical Optics, John E. Greivenkamp (FG01)

Field Guide to Atmospheric Optics, Larry C. Andrews (FG02)

Field Guide to Adaptive Optics, Robert K. Tyson & Benjamin W. Frazier (FG03)

Field Guide to Visual and Ophthalmic Optics, Jim Schwiegerling (FG04)

Field Guide to Polarization, Edward Collett (FG05)

Field Guide to Optical Lithography, Chris A. Mack (FG06)

Field Guide to Optical Thin Films, Ronald R. Willey (FG07)

Field Guide to Spectroscopy, David W. Ball (FG08)

Visual optics is a scientific field that brings together many disciplines. Optical engineering and biology are interwoven to produce the most sophisticated imaging system known. The human visual system functions over a broad range of conditions, adapts to its surroundings and is capable of quickly processing complex visual information at enviable speeds. Many of the great names of optical physics such as Newton, Maxwell, Young, Helmholtz, and Alvarez have all made significant contributions to the field of visual optics. This book assembles much of the anatomy, physiology, and functioning of the eye, as well as the engineering and design of a wide assortment of tools for measuring, photographing and characterizing properties of the surfaces and structures of the eve. Finally, descriptions of our attempts to correct vision, reverse the aging process, and improve on Mother Nature are given.

I would like to express my gratitude to several colleagues for their help with this book. First, I'd like to thank John Greivenkamp for granting the opportunity to write this book and for his mentoring and friendship. Second, I'd like to thank Joseph Miller, whose enthusiasm for engineering is contagious, and whose ideas are always elegant. Finally, I'd like to thank Charlie Campbell for passing on a bit of his wisdom and knowledge and for providing an outlet for my babbling about Zernike polynomials.

This book is dedicated to my wonderful wife Diana, my son Max, and my daughter Marie.

Jim Schwiegerling Dept. of Ophthalmology and Optical Sciences Center, University of Arizona

Table of Contents

Glossary	Х
Ocular Function	1
Eyeball	1
Cornea	2
Retina	3
Photoreceptors	4
Retinal Landmarks	5
Properties of Ocular Components	6
Accommodation	7
Pupil Size and Dark Adaptation	8
Transmission and Reflectance	9
Axes of the Eye	10
Stiles-Crawford Effect	11
Photopic $V(\lambda)$ and Scotopic $V'(\lambda)$ Response	12
Eye Movements	13
Vergence	14
Paraxial Schematic Eye	15
Arizona Eye Model	16
Aberrations	17
Visual Acuity	19
Visual Acuity and Eye Charts	20
Contrast Sensitivity Function (CSF)	21
Emmetropia and Ametropia	23
Far and Near Points	24
Presbyopia	25
Correction of Ocular Errors	26
Spectacles: Single Vision	26
Spectacle Lenses	27
Lensmeter	28
Spherical and Cylindrical Refractive Error	29
Prismatic Error	30
Astigmatic Decomposition	31
Special Ophthalmic Lenses	32
Variable Prisms and Lenses	33
Contact Lenses	34
Radiuscope	35

Spectacle and Contact Lens Materials	36
Surgical Correction of Refractive Error	37
Cataract Surgery	38
Ophthalmic Instrumentation and Metrology	39
Purkinje Images	39
Fluorescein Imaging	40
Indocyanine Green Imaging	41
Keratometry	42
Corneal Topography	43
Corneal Topography: Axial Power	44
Corneal Topography: Instantaneous Power	45
Anterior Segment Imaging	46
Wavefront Sensing: Shack-Hartmann Sensing	47
Wavefront Sensing: Tscherning Aberrometry	48
Wavefront Sensing: Retinal Raytracing	49
Wavefront Sensing: Spatially Resolved Refractometry	50
Wavefront Sensing: Reconstruction	51
Zernike Polynomials: Wavefront Sensing Standard	53
Zernike Polynomials: Cartesian Coordinates	54
Zernike Polynomials: Useful Formulas	55
Ophthalmoscopy	57
Retinal Imaging	58
Field of View and Perimetry	59
Retinoscopy	60
Autorefraction	61
Badal Optometer and Maxwellian View	62
Common Ophthalmic Lasers	63
Eye Safety: Laser Sources	64
Eye Safety: Non-laser Sources	65
Color	66
Photometry	66
Colorimetry: RGB and CIE XYZ Systems	67
Colorimetry: Chromaticity Diagram	68
Colorimetry: Primaries and Gamut	69
Colorimetry: CIELUV Color Space	70
Colorimetry: CIELAB Color Space	71

Table of Contents (cont.)

Chromatic Adaptation	72
L, M, and S Cone Fundamentals	73
Appendices	74
Aspheric and Astigmatic Surfaces	74
Differential Geometry	75
Trigonometric Identities	76
CIE Photopic V(λ) and Scotopic V'(λ) Response	77
1931 CIE 2° Color Matching Functions	78
1964 CIE 10° Color Matching Functions	80
Stockman & Sharpe 2° Cone Fundamentals	82
Incoherent Retinal Hazard Functions	85
Zernike Polynomials: Table in Polar Coordinates	87
Zernike Polynomials: Table in Cartesian Coordinates	88
Equation Summary	89
Bibliography	99
Index	105

Glossary

A	Accommodation
A	A-constant
a^*	Color coordinate in CIELAB space
$A(\lambda)$	Aphakic & infant retinal hazard function
$A(\theta)$	Oblique astigmatism
ACD	Anterior chamber depth
AK	Astigmatic keratotomy
ARMD	Age-related macular degeneration
ArF	Argon fluoride
Axis	Cylinder axis
В	Blue channel in RGB space
b^*	Color coordinate in CIELAB space
$B(\lambda)$	Blue light retinal hazard function
$\overline{b}(\lambda)$	Color matching function in CIE RGB space
BD	Base down
BI	Base in
BO	Base out
BU	Base up
C_A, C_B, C_C	Constants for laser exposure calculations
/ / -	1
C_{uv}^{*},C_{ab}^{*}	Chroma
C^*_{uv}, C^*_{ab} cd	Chroma Units of candelas
C_{uv}^*, C_{ab}^* cd CIE	Chroma Units of candelas Commission Internationale de l'Eclairage
C_{uv}^*, C_{ab}^* cd CIE CK	Chroma Units of candelas Commission Internationale de l'Eclairage Conductive keratoplasty
C_{uv}^*, C_{ab}^* cd CIE CK CMF	Chroma Units of candelas Commission Internationale de l'Eclairage Conductive keratoplasty Color matching function
C_{uv}^*, C_{ab}^* cd CIE CK CMF CSF	Chroma Units of candelas Commission Internationale de l'Eclairage Conductive keratoplasty Color matching function Contrast sensitivity function
C^*_{uv}, C^*_{ab} cd CIE CK CMF CSF Cyl	Chroma Units of candelas Commission Internationale de l'Eclairage Conductive keratoplasty Color matching function Contrast sensitivity function Cylinder power
C^*_{uv}, C^*_{ab} cd CIE CK CMF CSF Cyl D	Chroma Units of candelas Commission Internationale de l'Eclairage Conductive keratoplasty Color matching function Contrast sensitivity function Cylinder power Units of diopters (inverse meters)
C_{uv}^*, C_{ab}^* cd CIE CK CMF CSF Cyl D D	Chroma Units of candelas Commission Internationale de l'Eclairage Conductive keratoplasty Color matching function Contrast sensitivity function Cylinder power Units of diopters (inverse meters) Pupil diameter
C_{uv}^*, C_{ab}^* cd CIE CK CMF CSF Cyl D D d	Chroma Units of candelas Commission Internationale de l'Eclairage Conductive keratoplasty Color matching function Contrast sensitivity function Cylinder power Units of diopters (inverse meters) Pupil diameter Distance
C_{uv}^*, C_{ab}^* cd CIE CK CMF CSF Cyl D D d d	Chroma Units of candelas Commission Internationale de l'Eclairage Conductive keratoplasty Color matching function Contrast sensitivity function Cylinder power Units of diopters (inverse meters) Pupil diameter Distance Power error
C_{uv}^*, C_{ab}^* cd CIE CK CMF CSF Cyl D D d d d ϕ D65	Chroma Units of candelas Commission Internationale de l'Eclairage Conductive keratoplasty Color matching function Contrast sensitivity function Cylinder power Units of diopters (inverse meters) Pupil diameter Distance Power error 6500° K reference white light source
C_{uv}^*, C_{ab}^* cd CIE CK CMF CSF Cyl D D d d $d\phi$ D65 E	Chroma Units of candelas Commission Internationale de l'Eclairage Conductive keratoplasty Color matching function Contrast sensitivity function Cylinder power Units of diopters (inverse meters) Pupil diameter Distance Power error 6500° K reference white light source Component of the first fundamental form
C_{uv}^*, C_{ab}^* cd CIE CK CMF CSF Cyl D D d d $d\phi$ D65 E E_v	Chroma Units of candelas Commission Internationale de l'Eclairage Conductive keratoplasty Color matching function Contrast sensitivity function Cylinder power Units of diopters (inverse meters) Pupil diameter Distance Power error 6500° K reference white light source Component of the first fundamental form Illuminance
C_{uv}^*, C_{ab}^* cd CIE CK CMF CSF Cyl D D d d d ϕ D65 E E E_v F	Chroma Units of candelas Commission Internationale de l'Eclairage Conductive keratoplasty Color matching function Contrast sensitivity function Cylinder power Units of diopters (inverse meters) Pupil diameter Distance Power error 6500° K reference white light source Component of the first fundamental form Illuminance Component of the first fundamental form
C_{uv}^*, C_{ab}^* cd CIE CK CMF CSF Cyl D D d d d $d\phi$ D65 E E_{v} F f	Chroma Units of candelas Commission Internationale de l'Eclairage Conductive keratoplasty Color matching function Contrast sensitivity function Cylinder power Units of diopters (inverse meters) Pupil diameter Distance Power error 6500° K reference white light source Component of the first fundamental form Illuminance Component of the first fundamental form Focal length
C_{uv}^*, C_{ab}^* cd CIE CK CMF CSF Cyl D D d d $d\phi$ D65 E E_v F f fo	Chroma Units of candelas Commission Internationale de l'Eclairage Conductive keratoplasty Color matching function Contrast sensitivity function Cylinder power Units of diopters (inverse meters) Pupil diameter Distance Power error 6500° K reference white light source Component of the first fundamental form Illuminance Component of the first fundamental form Focal length Spatial frequency
C_{uv}^*, C_{ab}^* cd CIE CK CMF CSF Cyl D D d d d ϕ D65 E E_{v} F f fo FOV	Chroma Units of candelas Commission Internationale de l'Eclairage Conductive keratoplasty Color matching function Contrast sensitivity function Cylinder power Units of diopters (inverse meters) Pupil diameter Distance Power error 6500° K reference white light source Component of the first fundamental form Illuminance Component of the first fundamental form Focal length Spatial frequency Field of view

G	Component of the first fundamental form
$\overline{g}(\lambda)$	Color matching function in CIE RGB space
Η	Mean curvature
$h_{ m ab},h_{ m uv}$	Hue
HDTV	High-definition television
I_{ν}	Luminous intensity
ICG	Indocyanine green
IOL	Intraocular lens
$\mathbf{J0}$	Horizontal crossed cylinder
J45	Oblique crossed cylinder
\mathbf{JCC}	Jackson crossed cylinder
Κ	Conic constant
K	Keratometry values
K	Gaussian curvature
L	Luminance
L	Axial length
L	Component of the second fundamental form
$L^*, L_{\nu}, L_{\lambda}$	Luminance
$L(\lambda)$	Long-wavelength cone fundamental
LA	LogMAR acuity
LASEK	Laser epithelial keratomileusis
LASIK	Laser in situ keratomileusis
LOS	Line of sight
LCA	Longitudinal chromatic aberration
lm	Units of lumens
LSA	Longitudinal spherical aberration
LTK	Laser thermal keratoplasty
lux	Units of lumens/m ²
M	Spherical equivalent power
M	Component of the second fundamental form
$M(\lambda)$	Middle-wavelength cone fundamental
MPE	Maximum permissible exposure
N	Component of the second fundamental form
n,n'	Index of refraction
n_k	Keratometric index of refraction
OCT	Optical coherence tomography
OD	Oculus dexter (right eye)

OS	Oculus sinister (left eye)
OU	Oculus uterque (both eyes)
P	Prism power
PI-PIV	Purkinje images
PAL	Progressive addition lens
PD	Interpupillary distance
PIOLs	Phakic intraocular lenses
PMMA	Polymethylmethacrylate
PRK	Photorefractive keratectomy
q'	Center of rotation of the eye
R	Radius of curvature
R	Red channel in RGB space
r	Radial position in polar coordinates
$R_{\rm x}, R_{ m y}$	Radii of curvature along the x and y axes
$R(\lambda)$	Thermal retinal hazard function
$\overline{r}(\lambda)$	Color matching function in CIE RGB space
RGP	Rigid gas permeable
RK	Radial keratotomy
ROC	Radius of curvature
S	Snellen fraction
$S(\lambda)$	Short-wavelength cone fundamental
SEP	Spherical equivalent power
\mathbf{SF}	Surgeon factor
SLO	Scanning laser ophthalmoscope
SLT	Selective laser trabeculoplasty
Sph	Spherical power
t	Thickness
t	Exposure time
Td	Units of troland
U	Object vergence
u^*, u	Color coordinates in CIELUV space
V	Image vergence
v*, v′	Color coordinates in CIELUV space
$V(\lambda)$	CIE photopic response
$V'(\lambda)$	CIE scotopic response
$V^*(\lambda)$	Stockman & Sharpe corrected photopic response
W	Wavefront error
Χ	Tristimulus value in CIE XYZ space

Glossary (Continued)

x	Chromaticity coordinate in CIE XYZ space
x	Horizontal Cartesian coordinate
$\overline{x}(\lambda)$	Color matching function in CIE XYZ space
Y	Tristimulus value in CIE XYZ space
у	Chromaticity coordinate in CIE XYZ space
у	Vertical Cartesian coordinate
$\overline{y}(\lambda)$	Color matching function in CIE XYZ space
Ζ	Tristimulus value in CIE XYZ space
z	Chromaticity coordinate in CIE XYZ space
z	Axial Cartesian coordinate
$\overline{z}(\lambda)$	Color matching function in CIE XYZ space
$Z_n^m(\rho, \theta)$	Zernike polynomial
Δ	Units of prism diopters
ΔE	Color difference in CIELAB and CIELUV spaces
Δλ	Wavelength interval
$\Delta x, \Delta y, \Delta z$	Translation along Cartesian axes
Ф,ф	Power
Φ_a	Axial power
Φ_i	Instantaneous power
Φ_{v}	Luminous flux
Φ(λ)	Radiometric power
к1, к2	Principal curvatures
λ	Wavelength
θ	Angle in polar coordinates
ρ	Normalized radial position in polar coordinates
τ	Transmission