Field Guide to

Lasers

Rüdiger Paschotta

SPIE Field Guides Volume FG12

John E. Greivenkamp, Series Editor

Bellingham, Washington USA

Library of Congress Cataloging-in-Publication Data

Paschotta, Rüdiger.
Field guide to lasers / Rüdiger Paschotta.
p. cm. -- (The field guide series ; v. FG12)
Includes bibliographical references and index.
ISBN 978-0-8194-6961-8
1. Lasers. I. Title.

QC688.P37 2007 621.36'6--dc22

2007031117

Published by

SPIE P.O. Box 10 Bellingham, Washington 98227-0010 USA Phone: +1 360 676 3290 Fax: +1 360 647 1445 Email: spie@spie.org Web: http://spie.org

Copyright \bigcirc 2008 The Society of Photo-Optical Instrumentation Engineers

All rights reserved. No part of this publication may be reproduced or distributed in any form or by any means without written permission of the publisher.

The content of this book reflects the work and thought of the author. Every effort has been made to publish reliable and accurate information herein, but the publisher is not responsible for the validity of the information or for any outcomes resulting from reliance thereon.

Printed in the United States of America.

SPIE Field Guides—a series Welcome to the of publications written directly for the practicing engineer or scientist. Many textbooks and professional reference books cover optical principles and techniques in depth. The aim of the SPIE Field Guides is to distill this information, providing readers with a handy desk or briefcase reference that provides basic. essential information about optical principles, techniques, or phenomena, including definitions and descriptions, key equations, illustrations, application examples, design considerations, and additional resources. A significant effort will be made to provide a consistent notation and style between volumes in the series.

Each SPIE Field Guide addresses a major field of optical science and technology. The concept of these Field Guides is a format-intensive presentation based on figures and equations supplemented by concise explanations. In most cases, this modular approach places a single topic on a page, and provides full coverage of that topic on that page. Highlights, insights, and rules of thumb are displayed in sidebars to the main text. The appendices at the end of each Field Guide provide additional information such as related material outside the main scope of the volume, key mathematical relationships, and alternative methods. While complete in their coverage, the concise presentation may not be appropriate for those new to the field.

The *SPIE Field Guides* are intended to be living documents. The modular page-based presentation format allows them to be easily updated and expanded. We are interested in your suggestions for new *Field Guide* topics as well as what material should be added to an individual volume to make these *Field Guides* more useful to you. Please contact us at **fieldguides@SPIE.org**.

John E. Greivenkamp, *Series Editor* Optical Sciences Center The University of Arizona Keep information at your fingertips with all of the titles in the *Field Guide* series:

Field Guide to Geometrical Optics, John E. Greivenkamp (FG01)

Field Guide to Atmospheric Optics, Larry C. Andrews (FG02)

Field Guide to Adaptive Optics, Robert K. Tyson & Benjamin W. Frazier (FG03)

Field Guide to Visual and Ophthalmic Optics, Jim Schwiegerling (FG04)

Field Guide to Polarization, Edward Collett (FG05)

Field Guide to Optical Lithography, Chris A. Mack (FG06)

Field Guide to Optical Thin Films, Ronald R. Willey (FG07)

Field Guide to Spectroscopy, David W. Ball (FG08)

Field Guide to Infrared Systems, Arnold Daniels (FG09)

Field Guide to Interferometric Optical Testing, Eric P. Goodwin & James C. Wyant (FG10)

Field Guide to Illumination, Angelo V. Arecchi; Tahar Messadi; R. John Koshel (FG11)

Within the nearly five decades since the invention of the laser, a wide range of laser devices has been developed. The primary objectives of this Field Guide are to provide an overview of all essential lasers types and their key properties and to give an introduction into the most important physical and technological aspects of lasers. In addition to the basic principles, such as stimulated emission and the properties of optical resonators, this *Field Guide* discusses many practical issues, including the variety of important laser crystal properties, the impact of thermal effects on laser performance, the methods of wavelength tuning and pulse generation, and laser noise. Practitioners may also gain valuable insight from remarks on laser safety (emphasizing real-life issues rather than formal rules and classifications) and obtain new ideas about how to make the laser development process more efficient. Therefore, this *Field Guide* can be useful for researchers as well as engineers using or developing laser sources.

I am greatly indebted to my wife, who strongly supported the creation of this *Field Guide*, mainly by improving the majority of the figures.

> Dr. Rüdiger Paschotta RP Photonics Consulting GmbH Zürich, Switzerland

Table of Contents

Glossary of Symbols	xi
Basic Principles of Lasers	1
Principle of a Laser	1
Spontaneous and Stimulated Emission	2
Optical Pumping: Three- and Four-Level Systems	3
Cross Sections and Level Lifetimes	4
Transition Bandwidths	5
Calculating Laser Gain	6
Gain Saturation	7
Homogeneous vs. Inhomogeneous Saturation	9
Spatial Hole Burning	10
Threshold and Slope Efficiency	11
Power Efficiency	13
Amplified Spontaneous Emission	14
Characteristics of Laser Light	15
Laser Beams	16
Temporal Coherence of Laser Radiation	16
Spatial Coherence	17
Gaussian Beams	18
Laser Beam Quality	20
Brightness or Radiance of Laser Beams	21
Optical Resonators	22
Basic Structure of an Optical Resonator	22
Resonator Modes	23
Resonance Frequencies	24
Bandwidth and Finesse of a Resonator	25
Stability Zones of a Resonator	26
Unstable Resonators	27
Resonator Design	28
Waveguides	29
Principle of Waveguiding	29
Waveguide Modes	30
Optical Fibers	31
Planar and Channel Waveguides	32

Table of Contents (cont.)

Semiconductor Lasers	33
Semiconductor Lasers	33
Light Amplification in Semiconductors	34
Low-Power Edge-Emitting Laser Diodes	35
External-Cavity Diode Lasers	36
Broad-Area Laser Diodes	37
Diode Bars	38
Diode Stacks	39
Vertical-Cavity Surface-Emitting Lasers	40
Vertical-External-Cavity Surface-Emitting Lasers	41
Fiber-Coupled Diode Lasers	42
Properties of Diode Lasers	44
Quantum Cascade Lasers	45
Solid-State Bulk Lasers	46
Solid-State Bulk Lasers	46
Rare-Earth-Doped Gain Media	47
Transition-Metal-Doped Gain Media	48
Properties of Host Crystals	49
Effective Cross Sections	50
Phonon Effects in Solid-State Gain Media	51
Quasi-Three-Level Laser Transitions	52
Lamp Pumping vs. Diode Pumping	53
Side Pumping vs. End Pumping	55
Linear vs. Ring Laser Resonators	56
Thermal Effects in Laser Crystals and Glasses	57
Rod Lasers	59
Slab Lasers	60
Thin-Disk Lasers	62
Monolithic Lasers and Microchip Lasers	63
Composite Laser Gain Media	64
Cryogenic Lasers	65
Beam Quality of Solid-State Lasers	66
Properties of Solid-State Bulk Lasers	68
Fiber and Waveguide Lasers	69
Fiber and Waveguide Lasers	69
Rare-Earth-Doped Fibers	70

Table of Contents (cont.)

The second The second Descent second	71
Types of Fiber Laser Resonators	$71 \\ 72$
DBR and DFB Fiber Lasers	
Double-Clad High-Power Fiber Devices	73 75
Polarization Issues	75
Other Waveguide Lasers	76
Upconversion Fiber Lasers	77
Properties of Fiber Lasers	78
Dye Lasers	79
Properties of Dye Lasers	80
Gas Lasers	81
Gas Lasers	81
Helium-Neon Lasers	82
Argon-Ion Lasers	83
Properties of Ion Lasers	84
Carbon-Dioxide Lasers	85
Properties of Carbon-Dioxide Lasers	86
Excimer Lasers	87
Properties of Excimer Lasers	88
Other Types of Lasers	89
Raman Lasers	89
Free-Electron Lasers	90
Chemically and Nuclear Pumped Lasers	91
Narrow-Linewidth Operation	92
Single-Mode vs. Multimode Operation	92
Intracavity Etalons and Other Filters	94
Examples of Single-Frequency Lasers	96
Injection Locking	97
Tunable Lasers	98
Principles of Wavelength Tuning	98
Tunable Diode Lasers	100
Tunable Solid-State Bulk and Fiber Lasers	101
Other Tunable Laser Sources	102
Q Switching	103
Active vs. Passive Q Switching	104

Table of Contents	(cont.)
--------------------------	---------

Gain Switching	105
Mode Locking	106
Active Mode Locking	106
Passive Mode Locking	107
Examples of Mode-Locked Solid-State Lasers	108
Cavity Dumping	109
Nonlinear Frequency Conversion	110
Frequency Doubling	110
Sum and Difference Frequency Generation	113
Frequency Tripling and Quadrupling	114
Optical Parametric Oscillators	115
Laser Noise	116
Forms and Origins of Laser Noise	116
Relaxation Oscillations and Spiking	117
Noise Specifications	118
Schawlow-Townes Linewidth	119
Laser Stabilization	120
Laser Safety	121
Overview on Laser Hazards	121
Safe Working Practices	122
Common Challenges for Laser Safety	123
Design and Development	124
Designing a Laser	124
Laser Modeling	125
The Development Process	126
Power Scaling	128
Equation Summary	130
Bibliography	134
Index	135

A	area (e.g., the cross section of a laser beam)
B	brightness (radiance) of a laser beam
с	velocity of light in a vacuum
E	electric field strength
$E_{ m sat}$	saturation energy (e.g., of a laser medium)
f	focal length (e.g., of a thermal lens)
$f_{\rm ro}$	relaxation oscillation frequency
$F_{ m p}$	fluence (energy per area) of a pulse
$F_{ m sat}$	saturation fluence (e.g., of a laser medium)
g	gain coefficient
g_0	small-signal gain coefficient or initial gain
G	power amplification factor (= exp(g))
h	Planck's constant
Ι	optical intensity (power per unit area)
$I_{ m sat}$	saturation intensity (e.g., of a laser medium)
k	wave number (= $2\pi / \lambda$)
l	loss coefficient
	(e.g., for round-trip losses of a resonator)
L	length (e.g., of a laser medium)
M^2	beam quality factor
n	refractive index
N_2	number density of ions in energy level 2
NA	numerical aperture
P	optical power (e.g., of a laser beam)
r	radial position (= distance from beam axis)
R	radius of curvature (e.g., of wavefronts)
$T_{ m rt}$	round-trip time of a resonator
$T_{ m oc}$	output coupler transmission
w	beam radius
w_0	beam radius at the beam waist
z	position coordinate along a laser beam
$z_{ m R}$	Rayleigh length of a laser beam

Glossary of Symbols (cont.)

- α linewidth enhancement factor
- ϕ optical phase or azimuthal angle
- θ divergence angle
- κ thermal conductivity
- λ wavelength
- v optical frequency
- Δv optical bandwidth
- σ_{abs} absorption cross section
- σ_{em} emission cross section
- τ_2 upper-state lifetime