Field Guide to

Laser Pulse Generation

Rüdiger Paschotta

SPIE Field Guides Volume FG14

John E. Greivenkamp, Series Editor

Bellingham, Washington USA

Library of Congress Cataloging-in-Publication Data

Paschotta, Rüdiger.
Field guide to laser pulse generation / Rudiger
Paschotta.
p. cm. -- (SPIE field guides ; FG14)
Includes bibliographical references and index.
ISBN 978-0-8194-7248-9 (alk. paper)
1. Laser pulses, Ultrashort. 2. Pulse generators. 3.
Pulse techniques (Electronics) I. Title.
QC689.5.L37P37 2008
621.36'6--dc22

2008038193

Published by

SPIE P.O. Box 10 Bellingham, Washington 98227-0010 USA Phone: +1 360 676 3290 Fax: +1 360 647 1445 E-mail: books@spie.org Web: http://spie.org

Copyright © 2008 Society of Photo-Optical Instrumentation Engineers

All rights reserved. No part of this publication may be reproduced or distributed in any form or by any means without written permission of the publisher.

The content of this book reflects the work and thought of the author. Every effort has been made to publish reliable and accurate information herein, but the publisher is not responsible for the validity of the information or for any outcomes resulting from reliance thereon.

Printed in the United States of America.

SPIE Field Guides—a series Welcome to the of publications written directly for the practicing engineer or scientist. Many textbooks and professional reference books cover optical principles and techniques in depth. The aim of the SPIE Field Guides is to distill this information, providing readers with a handy desk or briefcase reference that provides basic. essential information about optical principles, techniques, or phenomena, including definitions and descriptions, key equations, illustrations, application examples, design considerations, and additional resources. A significant effort will be made to provide a consistent notation and style between volumes in the series.

Each SPIE Field Guide addresses a major field of optical science and technology. The concept of these Field Guides is a format-intensive presentation based on figures and equations supplemented by concise explanations. In most cases, this modular approach places a single topic on a page and provides full coverage of that topic on that page. Highlights, insights, and rules of thumb are displayed in sidebars to the main text. The appendices at the end of each Field Guide provide additional information such as related material outside the main scope of the volume, key mathematical relationships, and alternative methods. While complete in its coverage, the concise presentation might not be appropriate for those new to the field.

The *SPIE Field Guides* are intended to be living documents. The modular page-based presentation format allows them to be easily updated and expanded. We are interested in your suggestions for new *Field Guide* topics as well as what material should be added to an individual volume to make these *Field Guides* more useful to you. Please contact us at **fieldguides@SPIE.org**.

John E. Greivenkamp, *Series Editor* Optical Sciences Center The University of Arizona Keep information at your fingertips with all of the titles in the *Field Guide* series:

Field Guide to Geometrical Optics, John E. Greivenkamp (FG01)

Field Guide to Atmospheric Optics, Larry C. Andrews (FG02)

Field Guide to Adaptive Optics, Robert K. Tyson & Benjamin W. Frazier (FG03)

Field Guide to Visual and Ophthalmic Optics, Jim Schwiegerling (FG04)

Field Guide to Polarization, Edward Collett (FG05)

Field Guide to Optical Lithography, Chris A. Mack (FG06)

Field Guide to Optical Thin Films, Ronald R. Willey (FG07)

Field Guide to Spectroscopy, David W. Ball (FG08)

Field Guide to Infrared Systems, Arnold Daniels (FG09)

Field Guide to Interferometric Optical Testing, Eric P. Goodwin & James C. Wyant (FG10)

Field Guide to Illumination, Angelo V. Arecchi; Tahar Messadi; R. John Koshel (FG11)

Field Guide to Lasers, Rüdiger Paschotta (FG12)

Field Guide to Laser Pulse Generation

Lasers and related devices have an amazing potential for generating both very intense and extremely short light pulses. Within four decades, a wide range of techniques for pulse generation has been developed; these techniques can be applied to different laser types and span a huge parameter space in terms of pulse duration, peak power, and pulse repetition rate. It is therefore not surprising that laser pulses have found an extremely wide range of applications.

The primary objective of this *Field Guide* is to provide an overview of all essential methods of laser pulse generation, including Q switching, gain switching, mode locking, and also the amplification of ultrashort pulses to high energies. Some material on pulse characterization is also provided. Both the physical aspects involved and the various technical limitations are discussed in significant depth. This *Field Guide* should therefore be very useful for a wide audience, including practitioners in industry as well as researchers. Even those who only apply, but do not themselves develop, pulsed and ultrafast laser systems can learn, for example, about the potential of different pulse generation methods.

I am greatly indebted to my wife, Christine, who strongly supported the creation of this *Field Guide* by improving many of the figures.

> Dr. Rüdiger Paschotta RP Photonics Consulting GmbH Zürich, Switzerland

Table	of	Contents
-------	----	----------

Glossary of Symbols	
Introduction to Optical Pulses	1
Optical Pulses in the Time Domain	2
Optical Pulses in the Frequency Domain	4
Bandwidth-Limited Pulses	5
Pulse Trains and Frequency Combs	6
Carrier–Envelope Offset	7
Overview of Laser Sources for Optical Pulses	9
Q Switching	10
Active and Passive Q Switching	11
Essentials of Laser Dynamics	12
Pumping the Gain Medium	13
Dynamics of Active Q Switching	14
Achievable Pulse Energy	15
Pulse Duration and Buildup Time	16
Influence of Pulse Repetition Rate	17
Dynamics of Passive Q Switching	18
Pulse Duration and Pulse Energy	20
Saturable Absorbers for Q Switching	21
Influence of Pump Fluctuations	22
Mode Beating in Multimode Lasers	23
Q-Switched Solid-State Bulk Lasers	24
Q-Switched Microchip Lasers	26
Q-Switched Fiber Lasers	27
Multiple Pulsing and Instabilities	28
Cavity Dumping	29
Gain Switching	30
Comparison with Other Techniques	32
Mode Locking	33
Active Mode Locking	34
Passive Mode Locking	36
Mode Locking with Fast Saturable Absorbers	37
Mode Locking with Slow Saturable Absorbers	38

Table of Contents (cont.)

Mode Locking (cont.)	
Chromatic Dispersion	39
Dispersive Pulse Broadening	40
Effect of Dispersion in Mode-Locked Lasers	41
Dispersion Compensation	42
The Kerr Nonlinearity	44
Self-Phase Modulation	45
Self-Phase Modulation and Chromatic Dispersion	46
Optical Solitons	47
Quasi-Soliton Pulses in Laser Resonators	48
Semiconductor Saturable Absorbers	50
Other Saturable Absorbers for Mode Locking	54
Initiation of Mode Locking	55
Q-Switching Instabilities	56
Actively Mode-Locked Solid-State Bulk Lasers	58
Harmonic Mode Locking	59
Passively Mode-Locked Solid-State Bulk Lasers	60
Performance Figures of Mode-Locked Bulk Lasers	61
Choice of Solid-State Gain Media	62
Additive-Pulse Mode Locking	63
Kerr Lens Mode Locking	64
Generation of Few-Cycle Pulses	65
Mode-Locked High-Power Thin-Disk Lasers	67
Miniature Lasers with High Repetition Rates	69
Mode-Locked Fiber Lasers	70
Soliton Fiber Lasers	71
Limitations of Soliton Fiber Lasers	73
Stretched-Pulse Fiber Lasers	74
Similariton Fiber Lasers	75
Mode-Locked Diode Lasers	77
Mode-Locked VECSELs	79
Mode-Locked Dye Lasers	80
Instabilities of Mode-Locked Lasers	81
Cavity Dumping	83
Amplification of Ultrashort Pulses	84
Multipass Solid-State Bulk Amplifiers	86
Regenerative Amplifiers	87
Fiber Amplifiers	88

Table of Contents (cont.)

Amplification of Ultrashort Pulses (cont.) Chirped-Pulse Amplification Optical Parametric Amplifiers	$\begin{array}{c} 89\\91 \end{array}$
Pulse Characterization	92
Measurement of Pulse Energy and Peak Power	93
Autocorrelators	94
Pulse Characterization with FROG	97
Pulse Characterization with SPIDER	98
Measurement of Carrier–Envelope Offset	99
Timing Jitter of Mode-Locked Lasers	100
Measurement of Timing Jitter	101
Equation Summary	102
Bibliography	105
Index	117

A(t)	electric field envelope function
c	velocity of light in vacuum
D_2	group delay dispersion
E	electric field strength
$E_{ m p}$	pulse energy
$E_{ m sat}$	saturation energy (e.g., of a laser medium)
f	frequency (e.g., noise frequency)
$f_{ m m}$	modulation frequency
$f_{\rm rep}$	pulse repetition rate
g	gain coefficient
$g_{ m f}$	final gain coefficient
$g_{ m i}$	initial gain coefficient
$g_{ m ss}$	gain coefficient in the steady state
G	power amplification factor [= exp(g)]
h	Planck's constant
Ι	optical intensity (power per unit area)
$I_{ m sat}$	saturation intensity (e.g., of a laser medium)
l	loss coefficient
	(e.g., for round-trip losses of a resonator)
n	refractive index
n_2	nonlinear index
P	optical power
P_{av}	average power
$P_{ m p}$	peak power
q	coefficient saturable loss
ΔR	modulation depth of saturable absorber
t	time
$T_{ m rt}$	round-trip time of a resonator
$T_{ m oc}$	output coupler transmission

Glossary of Symbols (cont.)

- γ nonlinear coefficient
- ϕ change of spectral phase
- λ wavelength
- v optical frequency
- v(t) instantaneous frequency
- v_{ceo} carrier–envelope offset frequency
- Δv optical bandwidth
- Δv_{γ} gain bandwidth
- τ_{g} upper-state lifetime
- τ_p pulse duration
- ω angular frequency