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1/f noise, 42

ABCD matrix, 61
aberration, 72
absorbance, 3
absorption, 3
active imaging, 97
Airy pattern, 58
amplitude distortion, 82
asymptotic beam growth

angle, 60

backward wave oscillator,
25

beam modes, 74
see Gaussian beam
modes

beam radius, 53, 60
beam squint, 82
beam waist, 54

radius, 54
beamwidth,

see half-power
beamwidth

Beer–Lambert law, 3
bilayer, 44
blackbody, 5
bolometer, 41
bound-to-continuum QCL

design, 21
bremmstrahlung

radiation, 23

chirped superlattice QCL
design, 21

coherence length, 14
coherent detection, 27
complex radius of

curvature, 52, 61

composite bolometers, 41
confocal distance, 59, 60
cross polarization, 82
crystal detector,

see rectifying diode
cyclotron resonance

frequency, 22
cyclotron resonance

masers, see gyrotron

dark current, 32
defocusing, 71
detectivity, 30
dielectric interface, 77
difference frequency

generation, 12
diffraction integrals, 96
diffraction parameter, 86
diffusion-cooled HEB, 48
diplexer, 87
direct detection, 27
dispersion, 3

edge taper, 56
efficiency

aperture, 56
illumination, 56
power coupling, 69
spillover, 56

electron acceleration, 6
electron hopping, 41
electro-optic crystal, 13
electro-optic sampling, 39
extrinsic detector, 32
extrinsic excitation, 32

femtosecond pulse, 7, 13,
17, 33, 39, 100

free-electron laser (FEL),
24
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frequency
down-conversion, 7

frequency multiplication,
7

frequency multipliers, 16
Fresnel number, 68
full-width-half-maximum

(FWHM), 55

Gabor modes, 96
Gaussian beam modes,

51, 58
Gaussian–Hermite
modes, 65
Gaussian–Laguerre
modes, 64
high-order,
cylindrical, 64
high-order,
rectangular, 65
mode coefficients, 66

Gaussicity, 70
geometrical optics, 2
geometrical theory of

diffraction, 96
GMBA, see Gaussian

beam modes
Golay cell, 50
Gunn diode, 8
gyrotron, 22

half-power beamwidth, 55
HEB, see hot-electron

bolometer
Helmholtz wave equation,

51
Hermite polynomials, 51
heterodyne receiver, 28,

37

horn antenna, 89
corrugated conical, 90
dual mode, 92
multimode, 93
shaped, 93
smooth-walled
conical, 92
smooth-walled
diagonal, 91
smooth-walled
pyramidal, 91

hot-electron bolometer, 47
superconducting
hot-electron
bolometer, 48

hot spot, 48

idler beam, 15
illumination efficiency,

see efficiency
impact ionization

avalanche transit
time (IMPATT) diode,
9

incoherent detection, 27
interferometer

diffraction losses, 86
dual-beam, 85
Fabry–Pérot, 87
four-port dual-beam,
88
Martin–Puplett, 87
Michelson, 84, 87

intrinsic excitation, 32

Johnson noise, 31
Josephson effect, 45

Laguerre polynomials, 51
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Landau level, 20
lasers, 6
lens antenna, 94
lenses

perfect, 76
linac, 23
linear electro-optic effect,

see Pockels effect

magnification, 95
method of moments, 96
microbolometer, 43
mirrors

off-axis, 82
off-axis ellipsoid, 80
off-axis paraboloid, 81

misalignment, 71
mixer, 37

hot-electron
bolometer, 48

multimode horn, 42
multiplexer, 87

negative differential
resistance, 6

noise equivalent power
(NEP), 29, 30

off-axis configuration, 80
operator

linear scattering, 74
optical heterodyning, 18
optical parametric

oscillators, 15
optical rectification, 12, 13
optically pumped far-IR

gas laser, 19
optically pumped THz

laser, see optically

pumped far-IR gas
laser

parametric amplification,
15

parametric generation, 15
paraxial wave equation,

51
partial coherence, 93
partial reflections, 72, 76
passive imaging, 97
path length modulator, 84
phase bunching, 22
phase matching, 14, 15
phase radius of curvature,

53
phase slippage, 53, 61
phonon-cooled HEB, 48
phonon noise, 42
photoconductive antenna

(PCA), 17, 28, 33, 34
photoconductive detector,

33
photoconductive switch,

18
photoconductors, 7
photodetector, 27
photomixer, 34
photomixing, 7, 18, 28
photon-assisted

tunneling, 38
physical optics, 2, 96
plane waves, 96
Pockels effect, 27, 39
polar crystal, 49
polarizing grid, 83
power coupling, 70
probe pulse, 33
propagation path

pure, 76
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p-type germanium laser,
20

pump beam, 15
pyroelectric detector, 49

quantum cascade laser, 21

ray matrix, 61
ray tracing, 96
Rayleigh criterion, 58
Rayleigh range,

see confocal distance
rectification, 27
rectifying diode, 35
reflectivity, 4
resonant phonon QCL

design, 21
resonant tunnel diode, 11
responsivity, 29, 30, 42

of a bolometer, 42
roof mirror, 84
RTD, see resonant tunnel

diode

scalar feed, see horn
antenna, corrugated
conical

scattering matrix, 58, 72,
75
cascading of, 79

Schottky barrier diodes,
16

Schottky diode, 35, 37
second-harmonic

generation, 12
shot noise, 31
sideband filter, 85
sidelobe, 89
signal beam, 15

signal-to-noise ratio, 29,
31

Smith–Purcell radiation,
26

SNR, see signal-to-noise
ratio

spectroscopy, 99
time-domain, 100

spillover, 57
spillover efficiency,

see efficiency
SQUID,

see superconducting
quantum interference
device

standing wave, 72
antenna-fed systems,
78

standing waves, 78
storage ring, 23
sum-frequency

generation, 12
superconducting quantum

interference device
(SQUID), 45

superconducting tunnel
junctions,
see superconductor–
insulator–
superconductor (SIS)

superconductor–insulator–
superconductor (SIS),
38

superradiance, 26
susceptibility, 12
synchrotron, 23
synchrotron radiation, 23,

24
system design, 95
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T rays, 1
taper efficiency,

see illumination
efficiency

thermal coefficient of
resistance, 42

thermal detector, 27
thermal noise, 31
thermionic emission, 35
THz band, 1
THz gap, 2
Ti:sapphire, 14, 17, 33, 39
tolerancing, 71
transferred-electron

device, 8
transition-edge sensor, 44
transition temperature,

44

transmission, 3
transmission matrices, 79
transmission matrix, 73
transmittance, 4
truncation, 57, 72

aperture, 75
tunable filters, 85
tunnel injection transit

time (TUNNETT)
diode, 10

ultrafast optics, 7
undulator, see wiggler

varactor diode, 16
varistor diode, 16

walk-off length, 14
wiggler, 24
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