Open Access
Ebook Topic:
Back Matter
Author Affiliations +
Abstract
This back matter contains the bibliography, index, and author's biography.

Bibliography

1 

Alpern M., Mason G. L., Jardinico R. E., ““Pupil size changes associated with changes in accommodative vergence,”,” Am J Ophthalmol, 52 762–767 (1961). Google Scholar

2 

Alvarez L. W., Google Scholar

3 

Ames A., Proctor C. A., ““Dioptrics of the eye,”,” J Opt Soc Am, 5 22–84 (1921). Google Scholar

4 

Applegate R. A., Lakshminarayanan V., ““Parametric representation of Stiles-Crawford functions: normal variations of peak location and directionality,”,” J Opt Soc Am A, 10 1611–1623 (1993). Google Scholar

5 

Arend O., Remky R., Evans D., Stuber R., Harris A., ““Contrast sensitivity loss is coupled with capillary dropout in patients with diabetes,”,” Invest Ophthalmol Vis Sci, 38 1819–1824 (1997). Google Scholar

6 

Atchison D. A., Smith G., Optics of the Human Eye, Butterworth-Heinemann, Oxford (2000). Google Scholar

7 

Barten P. G. J., Contrast Sensitivity of the Human Eye and Its Effects on Image Quality, SPIE Press, Bellingham, WA (1999). Google Scholar

8 

Boettner E. A., Wolter J. R., ““Transmission of the ocular media,”,” Invest Ophthalmol Vis Sci, 1 776–783 (1962). Google Scholar

9 

Chernyak D. A., ““Cyclotorsional eye motion occurring between wavefront measurement and refractive surgery,”,” J Cataract Ref Surg, 30 633–638 (2004). Google Scholar

10 

Duane A., ““Normal values of the accommodation at all ages,”,” Trans Sec Ophthalmol AMA, 53 383–391 (1912). Google Scholar

11 

Fannin T. E., Grosvenor T., Clinical Optics, Butterworth-Heinemann, Oxford (1997). Google Scholar

12 

Hecht S., Haig C., Chase A. M., ““The influence of light adaptation on subsequent dark adaptation of the eye,”,” J Gen Physiol, 20 831–850 (1937). Google Scholar

13 

Holladay J. T., ““International Lens & Implant Registry 2004,”,” J Cataract Refract Surg, 30 207–229 (2004). Google Scholar

14 

Howland H. C., Howland B., ““A subjective method for measurements of monochromatic aberrations of the eye,”,” J Opt Soc Am, 67 1508–1518 (1977). Google Scholar

15 

Humphrey W. E., Google Scholar

16 

““Guidelines of limits of exposure to broad-band incoherent optical radiation (0.38 to 3 μm),”,” Health Phys, 73 539–554 (1997). Google Scholar

17 

Ivanoff A., ““About the spherical aberration of the eye,”,” J Opt Soc Am, 46 901–903 (1956). Google Scholar

18 

Judd D. B., Proceedings of the Twelfth Session of the CIE, Stockholm, Bureau Central de la CIE, Paris (1951). Google Scholar

19 

Klein S. A., Mandell R. B., ““Axial and instantaneous power conversion in corneal topography,”,” Invest Ophthalmol Vis Sci, 36 2155–2159 (1995). Google Scholar

20 

Kooijman A. C., ““Light distribution on the retina of a wide-angle theoretical eye,”,” J Opt Soc Am, 73 1544–1550 (1983). Google Scholar

21 

Koretz J. F., Cook C. A., Kaufman P. L., ““Accommodation and presbyopia in the human eye: changes in the anterior segment and crystalline lens with focus,”,” Invest Ophthalmol Vis Sci, 38 569–578 (1997). Google Scholar

22 

Koretz J. F., Cook C. A., Kaufman P. L., ““Aging of the human lens: changes in shape upon accommodation and with accommodative loss,”,” J Opt Soc Am A, 19 144–151 (2002). Google Scholar

23 

Koretz J. F., Strenk S. A., Strenk L. M., Semmlow J. L., ““Scheimpflug and high-resolution magnetic resonance imaging of the anterior segment: a comparative study,” J Opt Soc Am A, 21 346–354 (2004). Google Scholar

24 

Le Grand Y., El Hage S. G., Physiological Optics, Springer-Verlag, Berlin (1980). Google Scholar

25 

Liang J., Grimm B., Goelz S., Bille J. F., ““Objective measurement of the wave aberrations of the human eye with the use of a Hartmann-Shack wavefront sensor,”,” J Opt Soc Am A, 11 1949–1957 (1994). Google Scholar

26 

Lotmar W., Lotmar T., ““Peripheral astigmatism in the human eye: experimental data and theoretical model prediction,”,” J Opt Soc Am, 64 510–513 (1974). Google Scholar

27 

Malacara D, Color Vision and Colorimetry: Theory and Applications, SPIE Press, Bellingham (2002). Google Scholar

28 

Mandell R. B., ““Location of the corneal sighting center in videokeratography,”,” J Refract Corneal Surg, 11 253–258 (1995). Google Scholar

29 

McLeod S., Pitts S. M., ““Reflection of light by small areas of the ocular fundus,”,” Invest Ophthalmol Vis Sci, 16 981–985 (1977). Google Scholar

30 

Miller D., Optics and Refraction: A User-Friendly Guide, Gower, New York (1991). Google Scholar

31 

Molebny V. V., Pallikaris I. G, Naoumidis L. P., Chyzh I. H., Molebny S. V., Sokurenko V. M., ““Retinal ray-tracing technique for eye refraction mapping,”,” Proc SPIE, 2971 175–183 (1997). Google Scholar

32 

Moon P., Spencer D. E., ““On the Stiles-Crawford effect,”,” J Opt Soc Am, 34 319–329 (1944). Google Scholar

33 

Porter J., Guirao A., Cox I. G., Williams D. R., ““Monochromatic aberrations of the human eye in a large population,”,” J Opt Soc Am A, 18 1793–1803 (2001). Google Scholar

34 

Poynton C., Digital Video and HDTV. Algorithms and Interfaces, Morgan Kaufmann, Amsterdam (2003). Google Scholar

35 

Rabbetts R. B., Bennett A. G., Clinical Visual Optics, Butterworth-Heinemann, Oxford (1990). Google Scholar

36 

Rempt F., Hoogerheide J., Hoogenboom W. P. H., ““Peripheral retinoscopy and the skiagram,”,” Ophthalmologica, 162 1–10 (1971). Google Scholar

37 

Roufs J. A., ““Dynamic properties of vision. I. experimental relationships between flicker and flash thresholds,”,” Vis Res, 12 261–278 (1972). Google Scholar

38 

Sivak J. G., Mandelman T., ““Chromatic dispersion of the ocular media,”,” Vis Res, 22 997–1003 (1982). Google Scholar

39 

Smirnov M. S., ““Measurement of the wave aberration of the human eye,”,” Biofizika, 6 687–703 (1961). Google Scholar

40 

Stiles W. S., Burch J. M., ““NPL colour-matching investigation: Final report,”,” Optica Acta, 6 1–26 (1959). Google Scholar

41 

Stockman A., Sharpe L. T., Gegenfurtner K. R., Sharpe L. T., ““Cone spectral sensitivities and color matching,”,” Color Vision: From Genes to Perception, Cambridge University Press, Cambridge (2001). Google Scholar

42 

Stockman A., Sharpe L. T., ““Spectral sensitivities of the middle- and long-wavelength sensitive cones derived from measurements in observers of known genotype,”,” Vision Research, 40 1711–1737 (2000). Google Scholar

43 

Thibos L. N., Applegate R. A., Schwiegerling J., Webb R., ““Standards for reporting the optical aberrations of eyes,”,” J Refract Surg, 18 S652–S660 (2002). Google Scholar

44 

Thibos L. N., Wheeler W., Horner D., ““Power vectors: an application of Fourier analysis to the description and statistical analysis of refractive error,”,” Optom Vis Sci, 74 367–375 (1997). Google Scholar

45 

Thibos L. N., Ye M., Zhang X., Bradley A., ““The chromatic eye: a new reduced-eye model of ocular chromatic aberration in humans,”,” Appl Opt, 31 3594–3600 (1992). Google Scholar

46 

Tscherning M., ““Die monochromatischen Aberrationen des menschlichen Auges,”,” Z Psychol Physiol Sinne, 6 456–471 (1894). Google Scholar

47 

van Nes F. L., Bouman M. A., ““Spatial modulation transfer in the human eye,”,” J Opt Soc Am, 57 401–406 (1967). Google Scholar

48 

Von Noorden G. K., Binocular Vision and Ocular Motility: Theory and Management of Strabismus, 4thMosby, St. Louis (1990). Google Scholar

49 

Vos J. J., ““Colorimetric and photometric properties of a 2-deg fundamental observer,”,” Color Research and Application, 3 125–128 (1978). Google Scholar

50 

Walsh G., Charman W. N., Howland H. C., ““Objective technique for the determination of monochromatic aberrations of the human eye,”,” J Opt Soc Am A, 1 987–992 (1984). Google Scholar

51 

Webb R. H., Penney C. M., Thompson K. P., ““Measurement of ocular wavefront distortion with a spatially resolved refractometer,”,” Appl Opt, 31 3678–3686 (1992). Google Scholar

52 

Winn B., Whitaker D., Elliot D. B., Phillips N. J., ““Factors affecting light-adapted pupil size in normal human subjects,”,” Invest Ophthalmol Vis Sci, 35 1132–1137 (1994). Google Scholar

53 

Wyszecki G., Stiles W. S., Color Science, Wiley, New York (1982). Google Scholar

page110-1.jpg Jim Schwiegerling is an Associate Professor of Ophthalmology and Optical Sciences at the University of Arizona. For the past five years, he has taught a course in visual optics, introducing engineers to the functioning of the human eye and ophthalmic instrumentation. After training at the University of Rochester and the University of Arizona, he joined the faculty of the Ophthalmology Department to bridge the gap between clinical and applied optics.

Dr. Schwiegerling’s research interests include wavefront sensing and adaptive optics in the human eye, customized ophthalmic lenses and procedures, corneal topography, contact and spectacle lens design, ophthalmic instrumentation, and improvement of refractive surgery outcomes.

Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Eye

Americium

System on a chip

Monochromatic aberrations

Colorimetry

Color vision

Contrast sensitivity

Back to Top