Chapter 3
Scatter Calculations and

Diffraction Theory

“In theory there is no difference between theory and practice. In practice there is.”
— Yogi Berra

This chapter outlines the important elements of diffraction theory and gives several
key results that pertain to the interpretation of measured scatter data. These results
are employed in Chapters 4 and 8 to relate measured scatter from reflective
surfaces to the corresponding surface roughness and to consider various methods
of scatter prediction. In Chapter 9, the diffraction theory results presented here are
combined with the polarization concepts found in Chapter 5 and used to outline
a technique for separating surface scatter from that due to subsurface defects and
contamination. A complete development of diffraction theory is well beyond the
scope of this book; however, excellent texts on the subject are available, and these
will be referenced in the basic review presented in the next three sections. Some
relatively new diffraction results are presented in Sections 3.4-3.6. The following
discussions assume that the reader has some familiarity with EM field theory and
the required complex math notation. Appendix A is a brief review of the elements
of field theory, and Appendix B gives details of some diffraction calculations.

3.1 Overview

When light from a point source passes through an aperture or past an edge, it
expands slightly into the shadowed region. The result is that the shadow borders
appear fuzzy instead of well defined. The effect is different from the one obtained
by illuminating an object with an extended light source (such as the shadow of
your head on this book) where the width of the reading lamp also contributes to
an indistinct shadow. Well-collimated light sources (sunlight, for example) also
produce fuzzy shadow edges. This bending effect, which illustrates the failure of
light to travel in exactly straight lines, is called diffraction and is analyzed through
the wave description of light.

As explained in Appendix A, the propagation of light is described in terms of the
transverse electric field E(z, r), where r denotes position, and 7 is time. The value
k is 2;t/A, and v is the light frequency. The expression in Eq. (3.1) is for a wave
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traveling in the direction of increasing r:

E(t,r) = Re[e(r)e/®r=2m0, (3.1)
E(r) = e(r)e’*. (3.2)

Phasor notation is used (the “real part” is understood), and the dependence on
time, which will appear in all terms, is dropped for convenience as indicated in
Eq. (3.2). The term e(r) gives spatial dependence. Quantities shown in bold are
vectors, indicating that they denote the polarization direction. Three common cases
given below are for a plane wave traveling from r = 0, a spherical wave diverging
from r = 0, and a spherical wave converging to r = 0. The value E is a constant
in space and time. The power of the converging and diverging waves, which is
proportional to 1/r2, follows the expected inverse square law:

E(r) = Epe’*"  Plane wave. (3.3)
Ey .
E(r) = =0 ik Diverging. (3.4)
r
Eo i :
E(r) = —e™* Converging. 3.5
r

An infinitely wide plane wave can be thought of as being made up of an infinite
number of spherical waves. Imagine the spherical waves originating at each point
along a constant phase plane of the plane wave. Superimposing the spherical
waves at some distance results in equal forward (Z direction) contributions and
equal but opposite contributions in the XY directions. Thus, at each point, the
spherical contributions sum to a forward-propagating wave with equal amplitude
and phase—in other words, a plane wave. If the original wave has amplitude or
phase variations, then the result will not be a plane wave, but summing the spherical
components will give the new wavefront. This is the essence of the calculations
in the next few paragraphs; variations are the result of approximations made to
simplify the mathematics.

Figure 3.1 shows the diffraction geometry for light transmitted through an
aperture in the x, y plane. The aperture, centered at » = 0, is typically illuminated by
a point source (diverging), a collimated beam (plane wave), or a converging beam
(virtual point source). In general, the aperture modulates the transmitted light in
both amplitude and phase. The modulated light leaving the aperture is given by
E(x,y), and the object of the diffraction calculation is to find the resulting electric
field E(x;, y,) in the observation plane, located a distance R from the aperture. The
source could also be located on the z > 0 side of a reflective aperture (or sample).

Amplitude modulations, caused by changes in aperture reflectance or
transmittance, are expressed by variations in e(x, y). For example, a slit aperture
changes from zero transmittance to unity and back again with no phase modulation.
Phase modulations are caused by index of refraction changes in transmitting
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Figure 3.1 Geometry for diffraction from an aperture in the x, y plane to the x,, x, plane.

samples and by surface roughness on reflecting samples and are expressed by
changes in the exponential component of E(r).

A useful exercise is the calculation of diffracted light from a slit aperture without
the benefit of using a diffraction theory result. The general nature of the solution,
the approximations required, and the limitations of such an approach become
immediately obvious. Consider a slit aperture of width L to be centered on the
x, y plane along the y axis, as shown in Fig. 3.2. A plane wave traveling along
the z axis is incident upon the aperture, and diffraction is to be observed at the
X5, s plane located at z = R. The assumption is made that R > L. Use is
made of the Huygens principle, which is an intuitive statement that wavefronts
can be constructed by allowing each point in a field to radiate as a spherical
source. The new wavefront, downstream, is then found from the envelope of the
spherical fronts. Early diffraction results depended on variations of this reasoning,
even though there are some obvious problems. For example, what do we do about
the backward-traveling wave? Polarization issues are ignored. We will also ignore
any field—aperture interaction, and assume that the field exists as presented by
the source right up to the aperture edge, where it drops to zero in a sudden
discontinuity. This is a true “back-of-the-envelope” calculation, whose purpose is
to develop insight for the more complicated issues to follow.

Two rays leaving from x = 0 and x = L/2 and eventually interfering at
coordinate Cy on the x, axis are shown in the diagram. The path difference of
the two waves is the small distance 4 shown in the figure. Making use of the small-
angle assumptions gives

h = Lx,/2R. (3.6)

At some value of x, & will reach the value A/2, and the two waves will cancel
in the observation plane. Within the limitations of the small-angle assumption, the
same reasoning holds for all the other pairs of rays separated by L/2 at the aperture
and reaching point C;. Thus, the condition

Xy = £#nAR/L (3.7)
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Figure 3.2 Plane wave diffraction from a slit.

(where n is an integer) will result in a zero-intensity value on the otherwise
illuminated x, axis. The relative intensity pattern can also be found. Ignoring
polarization issues, the spherically expanding wave from a differential source dE
over dx, located at x in the aperture, will have an amplitude proportional to dx
and inversely proportional to the distance from x. The resulting differential scalar
amplitude from the differential source may be evaluated in the observation plane,
where K has been used as a proportionality constant:

dE, = — K8 VR (3.8)

- JR+ (x; — x)?

The approach is to integrate over x from —L/2 to L/2, and thus obtain the total field
strength at C,. In order to perform the integral easily, some assumptions are made
to simplify the expression for the distance r; between x and Cj. In the amplitude
component, the distance is approximated as R; however, in the phase component,
this is inappropriate, as distance errors of only half a wavelength change the sign
with which a particular component is summed. For the phase term, the radical can
be expanded as
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Each additional term makes the integral more accurate and more difficult to
evaluate. The two common approximations have been named after the men who
made them, as indicated. The approximations are better for large R. This has led to
the terminology getting to the far field, which usually implies that the Fraunhofer
approximation is accurate enough to predict experimental results. If a source is
used that converges at the observation plane, then a term is introduced that cancels
the x?/2R term, making the Fraunhofer and Fresnel approximations identical. For
the example at hand, we will proceed with the Fraunhofer approximation and
evaluate the integral as follows:

L/2
E, = KL jkre2/28) f e TR (3.10)
) R -L)2
E, = KL weion G (E) 3.11)
]R AR
where
sin(ra)

sinc(a) = for any real argument a.
Squaring the absolute value of the electric field and dividing by twice the

impedance of free space g gives the time-average power density I, (watts per
unit area) as a function of x;:

1 [KLV? x,L
I, = — | —| si 2() 3.12
s Zno[R] SR (3.12)

This relationship is plotted in Fig. 3.3. Notice that the zero intensity values appear
at the locations predicted earlier by Eq. (3.7). This means that the Fraunhofer
approximation is equivalent to the same small-angle approximation. Patterns very
much like the one in Fig. 3.3 can be observed by placing a small slit in a HeNe
laser beam. The inverse aperture, a small block, is easier to do. A piece of hair
works just fine. Using the above relationships and measurements of the diffraction
pattern made with a ruler allows the hair diameter to be calculated (and makes
a great classroom demonstration). The proportionality constant K has not been
evaluated, but this can be accomplished by integrating over the observation plane
and applying the conservation of energy.

Another observation is worth making: the sinc function is the Fourier transform
of the slit aperture [sometimes expressed as rect(x/L)]. In fact, Eq. (3.10) shows
this explicitly. In this context, the quantity (x;/AR) may be viewed as a spatial
frequency propagating in the x direction in the aperture plane. Notice that it has
units of inverse length, as required in Chapter 1. In fact, this is the same expression
for spatial frequency that is obtained from the grating equation at normal incidence
and small angles. Retracing our steps back through the development, it is easy to
see that if an aperture function other than unity had been applied, the Fraunhofer



