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2.2  Photon Noise Limitations of Thermal Detectors1 
 
Because thermal detectors are sensitive to the absorbed radiant power intensity, 
whereas photon detectors respond to the rate of photon absorption, the analysis of 
the photon noise limitations of the two types differ. The photon noise limitation 
of thermal detectors is imposed by fluctuations in the absorbed power, because of 
the quasi-random arrival of the photons, whereas photon detectors are limited by 
fluctuations in the rate of photon absorption. Consider first the photon noise-
limited thermal detector. 
 Assume a thermal detector that is coupled to its environment by radiation 
interchange alone, that is, there is no energy interchange through the mechanisms 
of convection or conduction. Assume that the detector is at a temperature T1, 
surrounded by a uniform environment at a temperature T2, and that it has an 
emissivity η that is independent of T1 and of wavelength. The noise spectrum of 
the power emitted by a radiating body in the optical frequency interval d υ ν is 
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M( υ ,T) is the power per unit area per unit optical frequency interval emitted by a 
radiating body. 
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Also, υ  is the optical frequency, h is Planck’s constant, co is the speed of light, T is 
the absolute temperature, k is Boltzmann’s constant, and A is the emitting area, 
which is the pixel area AD multiplied by the fill factor β, i.e., the fraction of AD 
which has an emissivity η. 
 The noise power spectrum Pp(f) represents the mean square deviation from 
the mean of the radiant power and is given by 
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Thus Pp(f) is termed the mean square noise power per unit bandwidth of the 
emitted radiation. The integral is found to be 
 
 Pp(f) = 8ADβσkT2

5 ; (2.4) 
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where the subscript 2 has been added to T to refer to the emitting background. 
Note that the noise power spectrum is frequency independent or “white.” The 

mean square noise power 2
pP  in a bandwidth B is therefore 

 

 2 5
28p DP A kT B= βσ . (2.5) 

 
 Consider now the interaction of this radiation noise with the photon noise-
limited thermal detector. ADβ in this instance represents the receiving area of the 
pixel. Assume the detector is sensitive to all possible wavelengths and therefore 
can detect all the incident noise. Since it has an emissivity η, which is identical 
with the absorptivity, the received mean square noise power will be 
 

 2 5
28p DP A kT B= βησ . (2.6) 

 
 However, there will also be a contribution to the noise due to random 
fluctuations in the radiation power emitted by the pixel. The pixel is itself a 
radiating body, having an emissivity η and a temperature T1. The quasi-random 
emission of photons from it, which carry away heat, is known as photon noise. 
By the same argument as above, the mean square noise power of the emitted 
radiation in a bandwidth B will be 
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Thus the total mean square radiation noise power in the bandwidth B is 
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In the particular instance in which the detector and the surroundings are in 
equilibrium and therefore are at the same temperature, the mean square noise 
power will be 
 

 2 516p DP A kT B= βησ . (2.9) 
 
The rms noise power for values of A=1 mm2, β=1, η=1, T=300 K, and B = 1 Hz 
is 
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 The photon noise-limited detectivity of a photon noise-limited thermal 
detector will now be determined. The noise equivalent power, the incident 
radiant power required to give a signal voltage equal to the noise voltage in a 

specified bandwidth, will be numerically equal to ( )1/ 2
2

pP η , since the thermal 

mechanism will transduce the photon noise equally as well as the radiation 
signal. Therefore D*, the square root of the detector area per unit noise 
equivalent power in a 1 Hz bandwidth, will be 
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Note that D* is independent of ADβ, as is to be expected. 
 In many practical instances the temperature of the background, T2, will be 
room temperature, 290 K. For many detectors, such as thermopiles and 
bolometers, the detector temperature will also be 290 K. Figure 2-1 shows the 
photon noise-limited detectivity for an ideal thermal detector having an 
emissivity of unity, operated at 290 K and lower, as a function of detector 
temperature T1 and background temperature T2. Note that Eq. (2.11) is 
symmetrical in T1 and T2. Thus T1 and T2 can be interchanged in Fig. 2-1. 
 It can be seen that the highest possible D* to be expected from a thermal 
detector operated at room temperature and viewing a background at room 
temperature is 1.98 × 1010 cm Hz1/2/W. Even if the detector or background, not 
both, were cooled to absolute zero, the detectivity would improve only by the 
square root of two. This is a basic limitation of all thermal detectors. 
 Note that Eq. (2.11) and Fig. 2-1 assume that background radiation falls upon 
the pixel from all directions when the detector and background temperatures are 
equal, and from the forward hemisphere only when the detector is at cryogenic 
temperatures. In the latter case, if the field of view is reduced by cold shielding, 
and the pixel remains background limited, the D* value will depend inversely 
upon the sine of the half angle of θ where θ is the included angle of the cold 
shield (see Fig. 2-2). 
 
2.3 Temperature Fluctuation Noise in Thermal   

Detectors1  
 
Another approach to determining the photon noise limited performance of 
thermal detectors is through the concept of temperature fluctuation noise. A 
thermal detector in contact with its environment by conduction and radiation 
exhibits random fluctuations in temperature, known as temperature fluctuation 
noise, because of the statistical nature of the heat interchange with its 
surroundings. If the conduction interchange is negligible compared to the 
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Figure 2-1. Photon noise-limited D* of thermal detectors as a function of detector 
temperature T1 and background temperature T2. Viewing angle of 2π steradians 
and unit absorptivity. From P.W. Kruse, L.D. McGlauchlin, and R.B. McQuistan.1 
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Figure 2-2. Relative increase in background fluctuation noise-limited D *

λ  and 
D*(T) for photon and thermal detectors achieved by using cold aperture. From 
P.W. Kruse, L.D. McGlauchlin, and R.B. McQuistan.1 
 
radiation interchange, temperature fluctuation noise would be expected to 
become identified with background fluctuation noise. The following discussion 
demonstrates this mathematically. Consider first of all the magnitude of the 
temperature fluctuations of the detecting material. The material, having a heat 
capacity C, changes its temperature T by the incremental amount ∆T in response 
to the energy increment ∆E according to 
 
 ∆E = C ∆T.  (2.12) 
 
 The thermodynamic system composed of the material and surroundings 
possesses many degrees of freedom. Tolman2 states that the mean square 
fluctuations in energy 2E∆  of a system having many degrees of freedom is given 
by 
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 2 2E kT C∆ = ; (2.13) 
 
where k is Boltzmann’s constant. Therefore 
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Einstein3 showed that C in this case is the harmonic mean of the heat capacities 
of the material and surroundings. 
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where CA and CB are the heat capacities of the body and surroundings, 
respectively. If the surroundings have a much greater heat capacity than the body, 
which is the usual situation, the harmonic mean heat capacity becomes that of the 
body. 
 Next consider the spectral content of the fluctuations. Let the detecting 
material be at an incremental temperature difference ∆T above its surroundings. 
Heat will flow from the material to the surroundings at a rate proportional to ∆T, 
the proportionality constant being the heat transfer coefficient G between the 
material and the surroundings. The heat transfer equation is 
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where d(∆E)/dt is the rate of flow of heat. However, Eq. (2.12) shows that the 
rate of flow of heat can also be expressed as 
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 If the material is at a higher temperature than its surroundings, heat flows 
from the material to the surroundings and d(∆E)/dt is negative. Equating Eqs. 
(2.16) and (2.17), a differential equation describing the heat transfer is found to 
be 
 

 ( ) .d TC G T
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∆− = ∆  (2.18) 

 
The solution of this is 
 




