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Chapter 2 
Fourier Integral Representation 
of an Optical Image 
 
 
This chapter describes optical transfer functions. The concepts of linearity and 
shift invariance were introduced in Chapter 1. This chapter continues that 
discussion by applying those concepts to optical imaging components and 
systems.  

Images are two dimensional and are accurately described by two-dimensional 
Fourier integrals. Common practice, however, is to analyze or measure horizontal 
and vertical frequency response and then use the results to characterize imager 
performance. This chapter describes the errors that result from assuming that an 
imager is characterized by its horizontal and vertical frequency response.  

Throughout this tutorial, the mathematics is at the introductory calculus 
level. However, the descriptive arguments require some familiarity with the 
concepts of Fourier analysis and complex functions. 

 
2.1 Linear shift-invariant optical systems 

In Fig. 2.1, a simple optical system is imaging a clock onto a screen. For 
simplicity, unity magnification is assumed. If each point in the scene is blurred 
by the same amount, then the system is shift invariant. If the image intensity 
profile equals the sum of the individual blurs from each point in the scene, then 
the system is linear. 

The optical blur is called the point spread function (PSF). The PSF is 
illustrated in the lower left corner of the image. Each point source in the scene 
becomes a PSF in the image. The PSF is also called the impulse response of the 
system. Each point in the scene is blurred by the optics and projected onto the 
screen. This process is repeated for each of the infinite number of points in the 
scene. The image is the sum of all of the individual PSFs.  

Two considerations are important here. First, the process of the lens imaging 
the scene is linear and, therefore, superposition holds. The image is accurately 
represented by the sum of the PSF resulting from the lens that is imaging each  
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Figure 2.1 Clock being imaged by a lens onto a screen; a point source in the scene (upper 
right) becomes a point-spread-function blur in the image (lower left).  

 
individual scene point. Second, it is assumed that the shape of the optical blur 
(that is, the shape of the PSF) does not depend on position within the field of 
view.  

In most optical systems, the PSF is not constant over the entire field of view. 
Typically, optical aberrations vary with field angle. The optical blur is generally 
smaller at the center of an image than it is at the edge. However, the image plane 
can generally be subdivided into regions within which the optical blur is 
approximately constant. A region of the image with approximately constant blur 
is sometimes called an isoplanatic patch. Optical systems are linear and shift-
invariant over isoplanatic regions of the field of view. 

The image within an isoplanatic patch can be represented as a convolution of 
the PSF over the scene. If h(x,y) represents the spatial shape (the intensity 
distribution) of the PSF, then h(x – x',y –  y') represents a PSF at location (x',y') in 
the image plane. The units of x and y are milliradians (mrad). Let scn(x',y') 
describe the brightness of the scene, and img(x, y) describe the brightness of the 
image. 

 

 ( ) ( , ) ( , )mg cni x,y h x x' y y' s x' y' dx' dy'
 

 

    . (2.1) 

 

Each point in the scene radiates independently and produces a point PSF in 
the image plane with corresponding intensity and position. The image is a linear 
superposition of the resulting PSFs. Mathematically, that result is obtained by 
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convolving the optical PSF over the scene intensity distribution to produce the 
image. Since a convolution in space corresponds to a multiplication in frequency, 
the optical system is a spatial filter. 

 

 (ξ,η) (ξ,η) (ξ,η)mg cnI H S , (2.2) 
 

where 
 Img(,) = Fourier transform of image, 
 Scn(,) = Fourier transform of scene, and 
 H(,) = the optical transfer function (OTF). 
 

 and  are spatial frequencies in the x and y direction, respectively. The units of 
 and  are cycles per milliradian (mrad1).  

The OTF is the Fourier transform of the PSF h(x,y). However, in order to 
keep the image intensity proportional to scene intensity, the OTF of the optics is 
normalized by the total area under the PSF blur spot. 
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The MTF of the optics is the magnitude H(,) of the function H(,).  
Note that the relationship in Eq. (2.2) applies between the scene and the 

image plane of a well-corrected optical system. The optical system is considered 
to be “well-corrected” because the PSF (the optical blur) is reasonably constant 
over the image plane.  

Optical systems often have multiple image planes. The first image becomes 
the scene that is imaged by the second set of optical elements. For example, the 
image in Fig. 2.1 might be re-imaged by another lens, as shown in Fig. 2.2. In 
this case, each point in the original image is blurred by the PSF of the next set of 
optics. If the OTF of the second lens is H2(,), then 

 

 2(ξ,η) (ξ,η) (ξ,η) (ξ,η)mg cnI H H S . (2.4) 
 

The total system MTF is the product of the individual MTFs. One caution is 
necessary here: Diffraction is caused by the limiting aperture in the imager. In a 
system with multiple image planes, diffraction MTF is applied only once. 

The transfer function between scene and display is the product of optics 
MTF, detector MTF, display MTF, and the MTF of other factors that blur the  
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Figure 2.2 The picture is further blurred by imaging with a second lens. The OTF from the 
scene to the display is the product of the individual lens OTFs. 

 
image. Any blurring of the image can be treated as an MTF as long as the blur is 
constant over the entire image. For example, the active area of a detector acts as 
optical PSF. The larger the active detector area, the more blurred is the image. 
Light falling anywhere on the detector area is summed together. The detector 
area convolves with the scene to blur the image in the same way that the optical 
PSF blurs the image.  

The MTF of the detector is the Fourier transform of the detector photo-
sensitive area. The display MTF is the Fourier transform of a display pixel-
intensity pattern. In the absence of sampling artifacts, the Fourier transform of 
the displayed image is the Fourier transform of the scene multiplied by the 
product of optics, detector, display, and other component MTFs.  

 
2.2 Equivalence of spatial and frequency domain filters 

Equations (2.1) and (2.2) describe the filtering process in the space domain and 
the frequency domain, respectively. In space, the output of an LSI system is the 
input convolved with the system impulse response (in this case, the optical PSF). 
Consider the example shown in Fig. 2.3. The system is a simple lens imaging the 
transparency of a four-bar target. Given that the lens blur is the same across the 
field of view, the system is LSI. The output image is the transparency intensity 
convolved with the lens PSF.  
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Figure 2.3 Spatial filtering in an optical system. 

 
Figure 2.4 illustrates frequency domain filtering. The two-dimensional 

Fourier transform of the scene intensity is taken. The input spectrum clearly 
shows the fundamental harmonic of the four-bar target in the horizontal direction. 
The higher-order harmonics are difficult to see because they have less amplitude 
than have the fundamental harmonics. The Fourier transform of the image is 
obtained by multiplying the Fourier transform of the scene by the Fourier 
transform of the PSF. The output image is found by taking the inverse transform 
of the product. The resulting image is identical to that given by the spatial 
convolution of the PSF in the space domain. 

In Fig. 2.4, the direct-current component of the input-, transfer-, and output-
frequency spectrums has been removed so that the higher-frequency components 
are visible. Otherwise, all that would be seen is a bright point in the middle of the 
picture. 

LSI imaging system analysis can be performed using two methods: spatial 
domain analysis and frequency domain analysis. The results given by these 
analyses are identical, although frequency domain analysis has an advantage. 
Equations (2.1) and (2.3) both involve double integrals. However, an imager has 
many component MTFs. Using Eq. (2.1) involves calculating double integrals for 
line-of-sight blur, diffraction blur, optical aberration blur, detector blur, digital 
filtering blur, display blur, and eyeball blur. Using Eq. (2.3) involves  
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Figure 2.4 Frequency domain filtering in an optical system. 

 
double integrals to find the Fourier transform of the scene and a second double 
integral to find the spatial image. Intervening calculations involve multiplying 
the various component MTFs. Fourier domain analysis is used because it 
provides accurate results with reduced computation. 

 
2.3 Reducing LSI Imager Analysis to One Dimension 

It is common to analyze imagers separately in the horizontal and vertical 
directions. The two-dimensional imager MTF is assumed to be the product of 
horizontal and vertical MTFs. This assumption reduces two-dimensional Fourier 
integrals to two one-dimensional Fourier integrals. The one-dimensional 
treatment, therefore, saves computation.  

The separability assumption is almost never satisfied, even in the simplest 
cases; assuming separability virtually always leads to some error in the result. 
Nonetheless, the majority of scientists and engineers use the product of 
horizontal and vertical frequency response as the imager MTF. This section 
discusses some of the errors that result from this common simplification.  

Separability in Cartesian coordinates requires that a function of (x,y) can be 
expressed as the product of a function of x times a function of y. 

 

 ( , ) ( ) ( )f x y f x f yx y . (2.5) 
 

If Eq. (2.5) is true, then the Fourier transform is also separable, and Eq. (2.6) 
holds. 
 

 (ξ,η) (ξ) (η)F F Fx y . (2.6) 


