An optical wireless system replacing cabled connections for the data transmission in the AIT

Gilli L., Cossu G., Rannello M., Messa A. and Ciaramella E. Scuola Superiore Sant'Anna, Pisa, Italy

Introduction

An Optical Wireless (OW) solution for the AIT application is presented in this work.

The proposed system will be able to replace the MIL-STD-1553B connection cables by means of optical Transceiver (TRX)s.

Figure 1: Optical transceiver (TRX)

Proposed Approach

The core of the proposed system is the TRX board, which was designed to meet the AIT scenario requirements.

Bidirectional OW connection between the S/C units under test and the Electrical Ground Support Equipment (EGSE).

The TRX is composed of (Fig.1):

- TX, infrared LED and a driver electrical circuit;
- RX, P-I-N junction PD and a TIA, to amplify and convert the current signal generated by the PIN-PD into a voltage signal
- Signal Adaptation Board (SAB), with the tasks of adapting the signal amplitude and performing a data flow control between the bus and the optical component.

Figure 2: Received signal eye diagram

Experimental results

The measurements were performed according to typical AIT scenario and three different configurations were identified:

- 1.TRX RACK is transmitting and TRX1/TRX2 is receiving;
- 2.TRX RACK is receiving and TRX1/TRX2 is transmitting;
- 3. TRX1 is receiving and TRX2 is transmitting

Sensitivity measurements

Variation of the received optical power density.

The receiver sensitivity was estimated from a linear fit of the logarithm of the measured BER value.

^{30 -25} It results to be equal -32 ^{n/cm³)} dBm/cm²

AIT measurements

An eye diagram is reported as example in Fig. 2. The results for the 3 configurations are reported in table

Configuration	Measured BER	$P_d \mathrm{dBm/cm^2}$	Link Margin (dB)
1 P1	$< 10^{-8}$	-28.3	4
1 P2	$< 10^{-8}$	-31	1
2 P1	$< 10^{-8}$	-27.6	4.4
2 P2	$< 10^{-8}$	-29.6	2.4
3	$< 10^{-8}$	-28.2	3.8

Conclusions

- A new transceiver for MIL-STD-1553B transmission over OWC was designed, realized and tested.
- A new OWC system for the AIT activities was successfully realized and tested

Acknowledgment

This work was partly supported by ESA Project TOWS (Contract 4000125458/18/UK/NR)

printed by MegaPrint Inc. www.postersession.com