PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.
Suzanne K. Ramsay,1 Ian S. McLean,2 Hideki Takami3
1European Southern Observatory (Germany) 2Univ. of California, Los Angeles (United States) 3Subaru Telescope, National Astronomical Observatory of Japan (United States)
This PDF file contains the front matter associated with SPIE Proceedings Volume 9147, including the Title Page, Copyright information, Table of Contents, Invited Panel Discussion, and Conference Committee listing.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Gemini South's instrument suite has been completely transformed since our last biennial update. We commissioned
the Gemini Multi-Conjugate Adaptive Optics System (GeMS) and its associated Gemini South Adaptive Optics
Imager (GSAOI) as well as Flamingos-2, our long-slit and multi-object infrared imager and spectrograph, and the
Gemini Planet Imager (GPI). We upgraded the CCDs in GMOS-S, our multi-object optical imager and spectrograph,
with the GMOS-N CCD upgrade scheduled for 2015. Our next instrument, the Gemini High-resolution Optical
SpecTrograph (GHOST) is in its preliminary design stage and we are making plans for the instrument to
follow:Gen4#3.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The W. M. Keck Observatory continues to develop new capabilities in support of our science driven strategic plan which
emphasizes leadership in key areas of observational astronomy. This leadership is a key component of the scientific
productivity of our observing community and depends on our ability to develop new instrumentation, upgrades to
existing instrumentation, and upgrades to supporting infrastructure at the observatory. In this paper we describe the as
measured performance of projects completed in 2014 and the expected performance of projects currently in the
development or construction phases. Projects reaching completion in 2014 include a near-IR tip/tilt sensor for the Keck I
adaptive optics system, a new center launch system for the Keck II laser guide star facility, and NIRES, a near-IR
Echelle spectrograph for the Keck II telescope. Projects in development include a new seeing limited integral field
spectrograph for the visible wavelength range called the Keck Cosmic Web Imager, a deployable tertiary mirror for the
Keck I telescope, upgrades to the spectrograph detector and the imager of the OSIRIS instrument, and an upgrade to the
telescope control systems on both Keck telescopes.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The development plan for instrumentation at the Paranal Observatory was outlined at SPIE in 2012. Its overall goal
is to keep Paranal at the forefront of ground-based astronomy. In addition to the completion of the current second
generation instruments, the installation of the Adaptive Optics Facility and execution of the Very Large Telescope
Interferometer mid-term implementation plan, it will allow one new instrument, or instrument upgrade, to be
initiated per year. The plan is divided into two phases. Over 2013-2017, instruments are selected and developed with
the criteria of filling the VLT capabilities and maintaining the balance between dedicated and general purpose
facilities. Beyond 2018, the instruments will be deployed in the era of maturity of the European Extremely Large
Telescope (E-ELT). The strategy for the second phase derives from analysis of VLT science in the E-ELT era, to be
fully shaped in the coming five years. The Call for ideas for a new instrument for the New Technology Telescope at
La Silla, fully funded by the community, has just been issued.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
An overview of instrumentation for the Large Binocular Telescope (LBT) is presented. Optical instrumentation
includes the Large Binocular Camera (LBC), a pair of wide-field (24′ × 24′) mosaic CCD imagers at the prime
focus, and the Multi-Object Double Spectrograph (MODS), a pair of dual-beam blue-red optimized long-slit
spectrographs mounted at the left and right direct F/15 Gregorian foci incorporating multiple slit masks for
multi-object spectroscopy over a 6′ field and spectral resolutions of up to 2000. Infrared instrumentation includes
the LBT Near-IR Spectrometer (LUCI), a modular near–infrared (0.9-2.5 μm) imager and spectrograph pair
mounted at the left and right front–bent F/15 Gregorian foci and designed for seeing-limited (FOV: 4′ × 4′)
imaging, long-slit spectroscopy, and multi-object spectroscopy utilizing cooled slit masks and diffraction limited
(FOV: 0'.5 x 0'.5) imaging and long-slit spectroscopy. Strategic instruments under development that can utilize
the full 23 m baseline of the LBT include an interferometric cryogenic beam combiner with near-infrared and
thermal-infrared instruments for Fizeau imaging and nulling interferometry (LBTI) and an optical bench near-
infrared beam combiner utilizing multi-conjugate adaptive optics for high angular resolution and sensitivity
(LINC-NIRVANA). LBTI is currently undergoing commissioning and performing science observations on the
LBT utilizing the installed adaptive secondary mirrors in both single–sided and two–sided beam combination
modes. In addition, a fiber-fed bench spectrograph (PEPSI) capable of ultra high resolution spectroscopy and
spectropolarimetry (R = 40,000-300,000) will be available as a principal investigator instrument. Installation
and testing of the bench spectrograph will begin in July 2014. Over the past four years the LBC pair, LUCI1, and
MODS1 have been commissioned and are now scheduled for routine partner science observations. Both LUCI2
and MODS2 passed their laboratory acceptance milestones in the summer of 2013 and have been installed on
the LBT. LUCI2 is currently being commissioned and the data analysis is well underway. Diffraction–limited
commissioning of its adaptive optics modes will begin in the 2014B semester. MODS2 commissioning began in
May 2014 and will completed in the 2014B semester as well. Binocular testing and commissioning of both the
LUCI and MODS pairs will begin in 2014B with the goal that this capability could be offered sometime in 2015.
The availability of all these instruments mounted simultaneously on the LBT permits unique science, flexible
scheduling, and improved operational support.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The Stratospheric Observatory for Infrared Astronomy (SOFIA) is the world’s largest airborne observatory, featuring a
2.5 meter effective aperture telescope housed in the aft section of a Boeing 747SP aircraft. SOFIA’s current instrument
suite includes: FORCAST (Faint Object InfraRed CAmera for the SOFIA Telescope), a 5-40 μm dual band
imager/grism spectrometer developed at Cornell University; HIPO (High-speed Imaging Photometer for Occultations), a
0.3-1.1μm imager built by Lowell Observatory; GREAT (German Receiver for Astronomy at Terahertz Frequencies), a
multichannel heterodyne spectrometer from 60-240 μm, developed by a consortium led by the Max Planck Institute for
Radio Astronomy; FLITECAM (First Light Infrared Test Experiment CAMera), a 1-5 μm wide-field imager/grism
spectrometer developed at UCLA; FIFI-LS (Far-Infrared Field-Imaging Line Spectrometer), a 42-200 μm IFU grating
spectrograph completed by University Stuttgart; and EXES (Echelon-Cross-Echelle Spectrograph), a 5-28 μm highresolution
spectrometer designed at the University of Texas and being completed by UC Davis and NASA Ames
Research Center. HAWC+ (High-resolution Airborne Wideband Camera) is a 50-240 μm imager that was originally
developed at the University of Chicago as a first-generation instrument (HAWC), and is being upgraded at JPL to add
polarimetry and new detectors developed at Goddard Space Flight Center (GSFC). SOFIA will continually update its
instrument suite with new instrumentation, technology demonstration experiments and upgrades to the existing
instrument suite. This paper details the current instrument capabilities and status, as well as the plans for future
instrumentation.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The Daniel K. Inouye Solar Telescope is a 4-meter-class all-reflecting telescope under construction on Haleakalā
mountain on the island of Maui, Hawai’i. When fully operational in 2019 it will be the world's largest solar telescope
with wavelength coverage of 380 nm to 28 microns and advanced Adaptive Optics enabling the highest spatial resolution
measurements of the solar atmosphere yet achieved. We review the first-generation DKIST instrument designs, select
critical science program topics, and the operations and data handling and processing strategies to accomplish them.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
New Instruments and Upgrades to Existing Instruments
CUBES is a high-efficiency, medium-resolution (R ≃ 20, 000) spectrograph dedicated to the “ground based UV”
(approximately the wavelength range from 300 to 400nm) destined for the Cassegrain focus of one of ESO’s VLT
unit telescopes in 2018/19. The CUBES project is a joint venture between ESO and Instituto de Astronomia,
Geof´ısica e Ciˆencias Atmosf´ericas (IAG) at the Universidade de S˜ao Paulo and the Brazilian Laborat´orio Nacional
de Astrofs´ıca (LNA). CUBES will provide access to a wealth of new and relevant information for stellar as well as
extra-galactic sources. Principle science cases include the study of heavy elements in metal-poor stars, the direct
determination of carbon, nitrogen and oxygen abundances by study of molecular bands in the UV range and the
determination of the Beryllium abundance as well as the study of active galactic nuclei and the inter-galactic
medium. With a streamlined modern instrument design, high efficiency dispersing elements and UV-sensitive
detectors, it will enable a significant gain in sensitivity over existing ground based medium-high resolution
spectrographs enabling vastly increased sample sizes accessible to the astronomical community. We present here
a brief overview of the project, introducing the science cases that drive the design and discussing the design
options and technological challenges.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The second generation Low Resolution Spectrograph (LRS2) is a new facility instrument for the Hobby-Eberly Telescope (HET). Based on the design of the Visible Integral-field Replicable Unit Spectrograph (VIRUS), which is the new flagship instrument for carrying out the HET Dark Energy Experiment (HETDEX), LRS2 provides integral field spectroscopy for a seeing-limited field of 12" x 6". For LRS2, the replicable design of VIRUS has been leveraged to gain broad wavelength coverage from 370 nm to 1.0 μm, spread between two fiber-fed dual- channel spectrographs, each of which can operate as an independent instrument. The blue spectrograph, LRS2-B, covers 370 λ (nm) ≤ 470 and 460 ≤ λ (nm) ≤ 700 at fixed resolving powers of R = λ/δλ ≈ 1900 and 1100, respectively, while the red spectrograph, LRS2-R, covers 650 ≤ λ (nm) ≤ 842 and 818 ≤ λ (nm) ≤ 1050 with both of its channels having R ≈ 1800. In this paper, we present a detailed description of the instrument’s design in which we focus on the departures from the basic VIRUS framework. The primary modifications include the fore-optics that are used to feed the fiber integral field units at unity fill-factor, the cameras’ correcting optics and detectors, and the volume phase holographic grisms. We also present a model of the instrument’s sensitivity and a description of specific science cases that have driven the design of LRS2, including systematically studying the spatially resolved properties of extended Lyα blobs at 2 < z < 3. LRS2 will provide a powerful spectroscopic follow-up platform for large surveys such as HETDEX.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The Robert Stobie Spectrograph Near Infrared Instrument (RSS-NIR), a prime focus facility instrument for the 11-meter
Southern African Large Telescope (SALT), is well into its laboratory integration and testing phase. RSS-NIR will
initially provide imaging and single or multi-object medium resolution spectroscopy in an 8 arcmin field of view at
wavelengths of 0.9 - 1.7 μm. Future modes, including tunable Fabry-Perot spectral imaging and polarimetry, have been
designed in and can be easily added later. RSS-NIR will mate to the existing visible wavelength RSS-VIS via a dichroic
beamsplitter, allowing simultaneous operation of the two instruments in all modes. Multi-object spectroscopy covering a
wavelength range of 0.32 - 1.7 μm on 10-meter class telescopes is a rare capability and once all the existing VIS modes
are incorporated into the NIR, the combined RSS will provide observational modes that are completely unique.
The VIS and NIR instruments share a common telescope focal plane, and slit mask for spectroscopic modes, and
collimator optics that operate at ambient observatory temperature. Beyond the dichroic beamsplitter, RSS-NIR is
enclosed in a pre-dewar box operating at -40 °C, and within that is a cryogenic dewar operating at 120 K housing the
detector and final camera optics and filters. This semi-warm configuration with compartments at multiple operating
temperatures poses a number of design and implementation challenges. In this paper we present overviews of the RSSNIR
instrument design and solutions to design challenges, measured performance of optical components, detector
system optimization results, and an update on the overall project status.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
We present an overview of the VISIR upgrade project. VISIR is the mid-infrared imager and spectrograph at ESO’s
VLT. The project team is comprised of ESO staff and members of the original VISIR consortium: CEA Saclay and
ASTRON. The project plan is based on input from the ESO user community with the goal of enhancing the scientific
performance and efficiency of VISIR by a combination of measures: installation of improved hardware, optimization of
instrument operations and software support. The cornerstone of the upgrade is the 1k by 1k Si:As AQUARIUS detector
array (Raytheon) which has been carefully characterized in ESO’s IR detector test facility (modified TIMMI 2
instrument). A prism spectroscopic mode will cover the N-band in a single observation. New scientific capabilities for
high resolution and high-contrast imaging will be offered by sub-aperture mask (SAM) and phase-mask coronagraphic
(4QPM/AGPM) modes. In order to make optimal use of favourable atmospheric conditions a water vapour monitor has
been deployed on Paranal, allowing for real-time decisions and the introduction of a user-defined constraint on water
vapour. During the commissioning in 2012 it was found that the on-sky sensitivity of the AQUARIUS detector was
significantly below expectations and that VISIR was not ready to go back to science operations. Extensive testing of the
detector arrays in the laboratory and on-sky enabled us to diagnose the cause for the shortcoming of the detector as
excess low frequency noise (ELFN). It is inherent to the design chosen for this detector and can’t be remedied by
changing the detector set-up. Since this is a form of correlated noise its impact can be limited by modulating the scene
recorded by the detector. We have studied several mitigation options and found that faster chopping using the secondary
mirror (M2) of the VLT offers the most promising way forward. Faster M2 chopping has been tested and is scheduled
for implementation before the end of 2014 after which we plan to re-commission VISIR. In addition an upgrade of the IT
infrastructure related to VISIR is planned in order to support burst-mode operations. The upgraded VISIR will be a
powerful instrument providing close to background limited performance for diffraction-limited observations at an 8-m
telescope. It will offer synergy with facilities such as ALMA, JWST, VLTI and SOFIA, while a wealth of targets is
available from survey work (e.g. VISTA, WISE). In addition it will bring confirmation of the technical readiness and
scientific value of several aspects of potential mid-IR instrumentation at Extremely Large Telescopes.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
In the context of the Cherenkov Telescope Array observatory project, the ASTRI SST-2M end-to-end prototype
telescope, entirely supported by the Italian National Institute of Astrophysics, is designed to detect cosmic primary
gamma ray energies from few TeV up to hundreds of TeV. The ASTRI SST-2M prototype camera is part of the
challenging synergy of novel optical design, camera sensors, front-end electronics and telescope structure design. The
camera is devoted to imaging and recording the Cherenkov images of air showers induced by primary particles into the
Earth’s atmosphere. In order to match the energy range mentioned above, the camera must be able to trigger events
within a few tens of nanoseconds with high detection efficiency. This is obtained by combining silicon photo-multiplier
sensors and suitable front-end electronics. Due to the characteristic imprint of the Cherenkov image that is a function of
the shower core distance, the signal dynamic range of the pixels and consequently of the front-end electronics must span
three orders of magnitude (1:1000 photo-electrons). These and many other features of the ASTRI SST-2M prototype
camera will be reported in this contribution together with a complete overview of the mechanical and thermodynamic
camera system.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The Visible Tunable Filter (VTF) is a narrowband tunable filter system for imaging spectropolarimetry. The instrument
will be one of the first-light instruments of the Daniel K. Inouye Solar Telescope (DKIST) that is currently under construction
on Maui (Hawaii). The DKIST has a clear aperture of 4 meters. The VTF is being developed by the Kiepenheuer
Institut für Sonnenphysik in Freiburg, as a German contribution to the DKIST.
The VTF is designed as a diffraction-limited narrowband tunable instrument for Stokes spectro-polarimetry in the
wavelength range between 520 and 860 nm. The instrument uses large-format Fabry-Perot interferometers (Etalons) as
tunable monochromators with clear apertures of about 240 mm. To minimize the influence of gravity on the interferometer
plates, the Fabry-Perots are placed horizontally. This implies a complex optical design and a three-dimensional support
structure instead of a horizontal optical bench.
The VTF has a field of view of one arc minute squared. With 4096x4096 pixel detectors, one pixel corresponds to an
angle of 0.014” on the sky (10 x 10 km on the Sun). The spectral resolution is 6 pm at a wavelength of 600 nm. One 2Dspectrum
with a polarimetric sensitivity of 5E-3 will be recorded within 13 seconds. The wavelength range of the VTF
includes a number of important spectral lines for the measurement flows and magnetic fields in the atmosphere of the
Sun. The VTF uses three identical large-format detectors, two for the polarimetric measurements, and one for broadband
filtergrams.
The main scientific observables of the VTF are Stokes polarimetric images to retrieve the magnetic field configuration of
the observed area, Doppler images to measure the line-of-sight flow in the solar photosphere, and monochromatic
intensity filtergrams to study higher layers of the solar atmosphere.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The Daniel K. Inouye Solar Telescope (formerly Advanced Technology Solar Telescope) will be the world's largest solar
telescope and polarimeter when completed in 2019. Efficient use of the telescope to address key science priorities calls
for polarization measurements simultaneously over broad wavelength ranges and calibration of the telescope and
polarimeters to high accuracy. Broadband polarization modulation and calibration optics utilizing crystal optics have
been designed for this application. The performance of polarization modulators and calibration retarders is presented
along with a discussion of the unique challenges of this application.
Polarimeters operate over the ranges of 0.38-1.1 microns, 0.5-2.5 microns, and 1.0-5.0 microns. Efficient polarization
modulation over these broad ranges led to modulators utilizing multiple wave plates and that are elliptical, rather than
linear, retarders. Calibration retarders are linear retarders and are constructed from the same sub-component wave plate
pairs as the polarization modulators. Polarization optics must address efficiency over broad wavelength ranges while
meeting beam deflection, transmitted wave front error, and thermal constraints and doing so with designs that, though
large in diameter, can be affordably manufactured.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
We present a novel concept for a highly sensitive, medium spectral resolution optical through near-IR spectrograph.
KIDSpec, the Kinetic Inductance Detector Spectrograph, uses the intrinsic energy resolving capability of an array of
optical/IR-sensitive MKIDs to distinguish multiple orders from a low line-density (echelle) grating. MKID arrays have a
wide bandpass (0.1-2.5um) and good quantum efficiency, making them strong candidates for replacing CCDs in many
astronomical instruments. By acting as an ‘order resolver’, the MKID array replaces the cross-disperser in an echelle
spectrograph. This greatly simplifies the optical layout of the spectrograph and enables longer slits than are possible with
cross-dispersed instruments. KIDSpec would have similar capabilities to ESO’s X-shooter instrument. It would provide
an R=4000-10,000 spectrum covering the entire optical and near-IR spectral range. In addition to a ‘long-slit’ mode, the
IFU would provide a small (~50 spaxel) field-of-view for spatially resolved sources. In addition, the photon-counting
operation of MKIDs and their photon-energy resolving ability enable a read-noise free spectrum with perfect cosmic ray
removal. The spectral resolution would be sufficient to remove the bright night-sky lines without the additional pixel
noise, making the instrument more sensitive than an equivalent semiconductor-based instrument.
KIDSpec would enhance many existing high-profile science cases, including transient (GRB, SNe, etc.) follow-up,
redshift determination of faint objects and transit spectroscopy of exoplanets. In addition it will enable unique science
cases, such as dynamical mass estimates of the compact objects in ultra-compact binaries.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The High-speed Imaging Photometer for Occultations (HIPO) is a special purpose science instrument for SOFIA. HIPO
can be co-mounted with FLITECAM in the so-called FLIPO configuration for stellar occultation or extrasolar planet
transit observations. We gained some flight experience with HIPO and FLITECAM in 2011 as described in a previous
publication (Dunham, et al., Proc SPIE, 8446-42, 2012). Since that time a number of improvements to HIPO have been
made and a deeper understanding of the airborne environment's impact on photometric precision at optical wavelengths
has been obtained. The improvements to HIPO include an improved beamsplitter for the FLIPO configuration, adding
deep depletion CCDs as a detector option, expanding the filter set to include a Sloan Digital Sky Survey filter set as well
as two custom filters for transit work, and an ability to guide the SOFIA telescope using HIPO data being acquired for
science purposes. We now understand that variations in PSF size due to varying static air density has a noticeable
impact on photometric stability while the related effect of Mach number is unimportant. The seriousness of ozone
absorption in the Chappuis band is now understood and an approach to avoid this has been found. Finally we present
demonstration transit data to illustrate our current transit photometry capability.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
We are designing and constructing a new SETI (Search for Extraterrestrial Intelligence) instrument to search for direct
evidence of interstellar communications via pulsed laser signals at near-infrared wavelengths. The new instrument
design builds upon our past optical SETI experiences, and is the first step toward a new, more versatile and sophisticated
generation of very fast optical and near-infrared pulse search devices. We present our instrumental design by giving an
overview of the opto-mechanical design, detector selection and characterization, signal processing, and integration
procedure. This project makes use of near-infrared (950 - 1650 nm) discrete amplification Avalanche Photodiodes
(APD) that have > 1 GHz bandwidths with low noise characteristics and moderate gain (~104). We have investigated the
use of single versus multiple detectors in our instrument (see Maire et al., this conference), and have optimized the
system to have both high sensitivity and low false coincidence rates. Our design is optimized for use behind a 1m
telescope and includes an optical camera for acquisition and guiding. A goal is to make our instrument relatively
economical and easy to duplicate. We describe our observational setup and our initial search strategies for SETI targets,
and for potential interesting compact astrophysical objects.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
We present an overview of and status report on the WEAVE next-generation spectroscopy facility for the William
Herschel Telescope (WHT). WEAVE principally targets optical ground-based follow up of upcoming ground-based
(LOFAR) and space-based (Gaia) surveys. WEAVE is a multi-object and multi-IFU facility utilizing a new 2-degree
prime focus field of view at the WHT, with a buffered pick-and-place positioner system hosting 1000 multi-object
(MOS) fibres, 20 integral field units, or a single large IFU for each observation. The fibres are fed to a single
spectrograph, with a pair of 8k(spectral) x 6k (spatial) pixel cameras, located within the WHT GHRIL enclosure on the
telescope Nasmyth platform, supporting observations at R~5000 over the full 370-1000nm wavelength range in a single
exposure, or a high resolution mode with limited coverage in each arm at R~20000. The project is now in the final
design and early procurement phase, with commissioning at the telescope expected in 2017.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
4MOST is a wide-field, high-multiplex spectroscopic survey facility under development for the VISTA telescope of the European Southern Observatory (ESO). Its main science drivers are in the fields of galactic archeology, high-energy physics, galaxy evolution and cosmology. 4MOST will in particular provide the spectroscopic complements to the large
area surveys coming from space missions like Gaia, eROSITA, Euclid, and PLATO and from ground-based facilities like VISTA, VST, DES, LSST and SKA. The 4MOST baseline concept features a 2.5 degree diameter field-of-view with ~2400 fibres in the focal surface that are configured by a fibre positioner based on the tilting spine principle. The fibres feed two types of spectrographs; ~1600 fibres go to two spectrographs with resolution R<5000 (λ~390-930 nm) and
~800 fibres to a spectrograph with R>18,000 (λ~392-437 nm and 515-572 nm and 605-675 nm). Both types of spectrographs are fixed-configuration, three-channel spectrographs. 4MOST will have an unique operations concept in which 5 year public surveys from both the consortium and the ESO community will be combined and observed in parallel during each exposure, resulting in more than 25 million spectra of targets spread over a large fraction of the
southern sky. The 4MOST Facility Simulator (4FS) was developed to demonstrate the feasibility of this observing
concept. 4MOST has been accepted for implementation by ESO with operations expected to start by the end of 2020.
This paper provides a top-level overview of the 4MOST facility, while other papers in these proceedings provide more
detailed descriptions of the instrument concept[1], the instrument requirements development[2], the systems engineering implementation[3], the instrument model[4], the fibre positioner concepts[5], the fibre feed[6], and the spectrographs[7].
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
MOONS is a new Multi-Object Optical and Near-infrared Spectrograph selected by ESO as a third generation
instrument for the Very Large Telescope (VLT). The grasp of the large collecting area offered by the VLT (8.2m
diameter), combined with the large multiplex and wavelength coverage (optical to near-IR: 0.8μm - 1.8μm) of MOONS
will provide the European astronomical community with a powerful, unique instrument able to pioneer a wide range of
Galactic, Extragalactic and Cosmological studies and provide crucial follow-up for major facilities such as Gaia,
VISTA, Euclid and LSST. MOONS has the observational power needed to unveil galaxy formation and evolution over
the entire history of the Universe, from stars in our Milky Way, through the redshift desert, and up to the epoch of very
first galaxies and re-ionization of the Universe at redshift z>8-9, just few million years after the Big Bang. On a
timescale of 5 years of observations, MOONS will provide high quality spectra for >3M stars in our Galaxy and the
local group, and for 1-2M galaxies at z>1 (SDSS-like survey), promising to revolutionise our understanding of the
Universe.
The baseline design consists of ~1000 fibers deployable over a field of view of ~500 square arcmin, the largest patrol
field offered by the Nasmyth focus at the VLT. The total wavelength coverage is 0.8μm-1.8μm and two resolution
modes: medium resolution and high resolution. In the medium resolution mode (R~4,000-6,000) the entire wavelength
range 0.8μm-1.8μm is observed simultaneously, while the high resolution mode covers simultaneously three selected
spectral regions: one around the CaII triplet (at R~8,000) to measure radial velocities, and two regions at R~20,000 one
in the J-band and one in the H-band, for detailed measurements of chemical abundances.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
MEGARA (Multi-Espectrógrafo en GTC de Alta Resolución para Astronomía) is an optical Integral-Field Unit (IFU)
and Multi-Object Spectrograph (MOS) designed for the GTC 10.4m telescope in La Palma. MEGARA offers two IFU
fiber bundles, one covering 12.5x11.3 arcsec2 with a spaxel size of 0.62 arcsec (Large Compact Bundle; LCB) and
another one covering 8.5x6.7 arcsec2 with a spaxel size of 0.42 arcsec (Small Compact Bundle; SCB). The MEGARA
MOS mode will allow observing up to 100 objects in a region of 3.5x3.5 arcmin2 around the two IFU bundles.
Both the LCB IFU and MOS capabilities of MEGARA will provide intermediate-to-high spectral resolutions
(RFWHM~6,000, 12,000 and 18,700, respectively for the low-, mid- and high-resolution Volume Phase Holographic
gratings) in the range 3650-9700ÅÅ. These values become RFWHM~7,000, 13,500, and 21,500 when the SCB is used.
A mechanism placed at the pseudo-slit position allows exchanging the three observing modes and also acts as focusing
mechanism. The spectrograph is a collimator-camera system that has a total of 11 VPHs simultaneously available (out of
the 18 VPHs designed and being built) that are placed in the pupil by means of a wheel and an insertion mechanism. The
custom-made cryostat hosts an E2V231-84 4kx4k CCD.
The UCM (Spain) leads the MEGARA Consortium that also includes INAOE (Mexico), IAA-CSIC (Spain), and UPM
(Spain). MEGARA is being developed under a contract between GRANTECAN and UCM. The detailed design,
construction and AIV phases are now funded and the instrument should be delivered to GTC before the end of 2016.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The One Degree Imager (ODI) was deployed during the summer of 2012 at the WIYN 3.5m telescope, located on Kitt Peak near Tucson, AZ (USA). ODI is an optical imager designed to deliver atmosphere-limited image quality (≤ 0.4” FWHM) over a one degree field of view, and uses Orthogonal Transfer Array (OTA) detectors to also allow for on-chip tip/tilt image motion compensation. At this time, the focal plane is partially populated (”pODI”) with 13 out of 64 OTA detectors, providing a central scientifically usable field of view of about 24′ x 24′; four of the thirteen detectors are installed at outlying positions to probe image quality at all field angles. The image quality has been verified to be indeed better than 0.4′′ FWHM over the full field when atmospheric conditions allow. Based on over one year of operations, we summarize pODIs performance and lessons learned. As pODI has proven the viability of the ODI instrument, the WIYN consortium is engaging in an upgrade project to add 12 more detectors to the focal plane enlarging the scientifically usable field of view to about 40′ x 40′. A design change in the new detectors has successfully addressed a low light level charge transfer inefficiency.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The Visible Integral-field Replicable Unit Spectrograph (VIRUS) consists of a baseline build of 150 identical
spectrographs (arrayed as 75 unit pairs) fed by 33,600 fibers, each 1.5 arcsec diameter, at the focus of the upgraded 10
m Hobby-Eberly Telescope (HET). VIRUS has a fixed bandpass of 350-550 nm and resolving power R~700. VIRUS is
the first example of industrial-scale replication applied to optical astronomy and is capable of surveying large areas of
sky, spectrally. The VIRUS concept offers significant savings of engineering effort, cost, and schedule when compared
to traditional instruments.
The main motivator for VIRUS is to map the evolution of dark energy for the Hobby-Eberly Telescope Dark Energy
Experiment (HETDEX), using 0.8M Lyman-α emitting galaxies as tracers. The full VIRUS array is due to be deployed starting at the end of 2014 and will provide a powerful new facility instrument for the HET, well suited to the
survey niche of the telescope, and will open up large area surveys of the emission line universe for the first time.
VIRUS is in full production, and we are about half way through. We review the production design, lessons learned in
reaching volume production, and preparation for deployment of this massive instrument. We also discuss the application
of the replicated spectrograph concept to next generation instrumentation on ELTs.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
VIRUS is the massively replicated fiber-fed spectrograph being built for the Hobby-Eberly Telescope to support
HETDEX (the Hobby-Eberly Telescope Dark Energy Experiment). The instrument consists of 156 identical
channels, fed by 34,944 fibers contained in 78 integral field units, deployed in the 22 arcminute field of the
upgraded HET. VIRUS covers 350-550nm at R ≈ 700 and is built to target Lyman α emitters at 1.9 < z < 3.5 to
measure the evolution of dark energy. Here we present the assembly line construction of the VIRUS spectrographs,
including their alignment and plans for characterization. We briefly discuss plans for installation on the telescope.
The spectrographs are being installed on the HET in several stages, and the instrument is due for completion
by the end of 2014.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The Dark Energy Spectroscopic Instrument (DESI) is a Stage IV ground-based dark energy experiment that will study baryon acoustic oscillations (BAO) and the growth of structure through redshift-space distortions with a wide-area galaxy and quasar spectroscopic redshift survey. The DESI instrument consists of a new wide-field (3.2 deg. linear field of view) corrector plus a multi-object spectrometer with up to 5000 robotically positioned optical fibers and will be installed at prime focus on the Mayall 4m telescope at Kitt Peak, Arizona. The fibers feed 10 three-arm spectrographs producing spectra that cover a wavelength range from 360-980 nm and have resolution of 2000-5500 depending on the wavelength. The DESI instrument is designed for a 14,000 sq. deg. multi-year survey of targets that trace the evolution of dark energy out to redshift 3.5 using the redshifts of luminous red galaxies (LRGs), emission line galaxies (ELGs) and quasars. DESI is the successor to the successful Stage-III BOSS spectroscopic redshift survey and complements imaging surveys such as the Stage-III Dark Energy Survey (DES, currently operating) and the Stage-IV Large Synoptic Survey Telescope (LSST, planned start early in the next decade).
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The Prime Focus Spectrograph (PFS) is an optical/near-infrared multi-fiber spectrograph with 2394 science fibers, which
are distributed in 1.3 degree diameter field of view at Subaru 8.2-meter telescope. The simultaneous wide wavelength
coverage from 0.38 μm to 1.26 μm, with the resolving power of 3000, strengthens its ability to target three main survey
programs: cosmology, Galactic archaeology, and galaxy/AGN evolution. A medium resolution mode with resolving
power of 5000 for 0.71 μm to 0.89 μm also will be available by simply exchanging dispersers. PFS takes the role for the
spectroscopic part of the Subaru Measurement of Images and Redshifts (SuMIRe) project, while Hyper Suprime-Cam
(HSC) works on the imaging part. HSC’s excellent image qualities have proven the high quality of the Wide Field
Corrector (WFC), which PFS shares with HSC. The PFS collaboration has succeeded in the project Preliminary Design
Review and is now in a phase of subsystem Critical Design Reviews and construction.
To transform the telescope plus WFC focal ratio, a 3-mm thick broad-band coated microlens is glued to each fiber tip.
The microlenses are molded glass, providing uniform lens dimensions and a variety of refractive-index selection. After
successful production of mechanical and optical samples, mass production is now complete. Following careful
investigations including Focal Ratio Degradation (FRD) measurements, a higher transmission fiber is selected for the
longest part of cable system, while one with a better FRD performance is selected for the fiber-positioner and fiber-slit
components, given the more frequent fiber movements and tightly curved structure. Each Fiber positioner consists of two
stages of piezo-electric rotary motors. Its engineering model has been produced and tested. After evaluating the statistics
of positioning accuracies, collision avoidance software, and interferences (if any) within/between electronics boards,
mass production will commence. Fiber positioning will be performed iteratively by taking an image of artificially back-illuminated
fibers with the Metrology camera located in the Cassegrain container. The camera is carefully designed so
that fiber position measurements are unaffected by small amounts of high special-frequency inaccuracies in WFC lens
surface shapes.
Target light carried through the fiber system reaches one of four identical fast-Schmidt spectrograph modules, each with
three arms. All optical glass blanks are now being polished. Prototype VPH gratings have been optically tested. CCD
production is complete, with standard fully-depleted CCDs for red arms and more-challenging thinner fully-depleted
CCDs with blue-optimized coating for blue arms. The active damping system against cooler vibration has been proven to
work as predicted, and spectrographs have been designed to avoid small possible residual resonances.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
EMIR is one of the first common user instruments for the GTC, the 10 meter telescope operating at the Roque de los
Muchachos Observatory (La Palma, Canary Islands, Spain). EMIR is being built by a Consortium of Spanish and French
institutes led by the Instituto de Astrofísica de Canarias (IAC). EMIR is primarily designed to be operated as a MOS in
the K band, but offers a wide range of observing modes, including imaging and spectroscopy, both long slit and
multiobject, in the wavelength range 0.9 to 2.5 μm. This contribution reports on the results achieved so far during the
verification phase at the IAC prior to its shipment to the GTC for being commissioned, which is due by mid 2015. After
a long period of design and fabrication, EMIR finally entered into its integration phase by mid 2013. Soon after this, the
verification phase at the IAC was initiated aimed at configuring and tuning the EMIR functions, mostly the instrument
control system, which includes a sophisticated on line data reduction pipeline, and demonstrating the fulfillment of the
top level requirements. We have designed an ambitious verification plan structured along the three kind of detectors at
hand: the MUX and the engineering and scientific grade arrays. The EMIR subsystems are being integrated as they are
needed for the purposes of the verification plan. In the first stage, using the MUX, the full optical system, but with a
single dispersive element out of the three which form the EMIR suite, the two large wheels mounting the filters and the
pseudo-grisms, plus the detector translation unit holding the MUX, were mounted. This stage was mainly devoted to
learn about the capabilities of the instrument, define different settings for its basic operation modes and test the accuracy,
repeatability and reliability of the mechanisms. In the second stage, using the engineering Hawaii2 FPA, the full set of
pseudo-grisms and band filters are mounted, which means that the instrument is fully assembled except for the cold slit
unit, a robotic reconfigurable multislit mask system capable of forming multislit pattern of 55 different slitlets in the
EMIR focal plane. This paper will briefly describe the principal units and features of the EMIR instrument as the main
results of the verification performed so far are discussed. The development and fabrication of EMIR is funded by
GRANTECAN and the Plan Nacional de Astronomía y Astrofísica (National Plan for Astronomy and Astrophysics,
Spain).
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Devasthal Optical Telescope Integral Field Spectrograph (DOTIFS) is a new multi-object Integral Field Spectrograph
(IFS) being designed and fabricated by the Inter-University Center for Astronomy and Astrophysics (IUCAA), Pune,
India, for the Cassegrain side port of the 3.6m Devasthal Optical Telescope, (DOT) being constructed by the Aryabhatta
Research Institute of Observational Sciences (ARIES), Nainital. It is mainly designed to study the physics and
kinematics of the ionized gas, star formation and H II regions in the nearby galaxies. It is a novel instrument in terms of
multi-IFU, built in deployment system, and high throughput. It consists of one magnifier, 16 integral field units (IFUs),
and 8 spectrographs. Each IFU is comprised of a microlens array and optical fibers and has 7.4” x 8.7” field of view with
144 spaxel elements, each sampling 0.8” hexagonal aperture. The IFUs can be distributed on the telescope side port over
an 8’ diameter focal plane by the deployment system. Optical fibers deliver light from the IFUs to the spectrographs.
Eight identical, all refractive, dedicated spectrographs will produce 2,304 R~1800 spectra over 370-740nm wavelength
range with a single exposure. Volume Phase Holographic gratings are chosen to make smaller optics and get high
throughput. The total throughput of the instrument including the telescope is predicted as 27.5% on average. Observing
techniques, data simulator and reduction software are also under development. Currently, conceptual and baseline design
review has been done. Some of the components have already been procured. The instrument is expected to see its first
light in 2016.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
KMOS is a multi-object near-infrared integral field spectrograph built by a consortium of UK and German institutes for
the ESO Paranal Observatory. We report on the on-sky performance verification of KMOS measured during three
commissioning runs on the ESO VLT in 2012/13 and some of the early science results.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
We describe the design, development, and laboratory test results of cryogenic probe arms
feeding deployable integral field units (IFUs) for the Mid-resolution InfRAreD Astronomical
Spectrograph (MIRADAS) - a near-infrared multi-object echelle spectrograph for the 10.4-meter
Gran Telescopio Canarias. MIRADAS selects targets using 20 positionable pickoff mirror optics
on cryogenic probe arms, each feeding a 3.7x1.2-arcsec field of view to the spectrograph
integral field units, while maintaining excellent diffraction-limited image quality. The probe arms
are based on a concept developed for the ACES instrument for Gemini and IRMOS for TMT.
We report on the detailed design and opto-mechanical testing of MIRADAS prototype probe
arms, including positioning accuracy, repeatability, and reliability under fully cryogenic
operation, and their performance for MIRADAS. We also discuss potential applications of this
technology to future instruments.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The High Efficiency and Resolution Multi Element Spectrograph, HERMES is an facility-class optical spectrograph for
the AAT. It is designed primarily for Galactic Archeology [21], the first major attempt to create a detailed
understanding of galaxy formation and evolution by studying the history of our own galaxy, the Milky Way. The goal of
the GALAH survey is to reconstruct the mass assembly history of the of the Milky Way, through a detailed spatially
tagged abundance study of one million stars. The spectrograph is based at the Anglo Australian Telescope (AAT) and is
fed by the existing 2dF robotic fiber positioning system. The spectrograph uses VPH-gratings to achieve a spectral
resolving power of 28,000 in standard mode and also provides a high-resolution mode ranging between 40,000 to 50,000
using a slit mask. The GALAH survey requires a SNR greater than 100 for a star brightness of V=14. The total spectral
coverage of the four channels is about 100nm between 370 and 1000nm for up to 392 simultaneous targets within the 2
degree field of view. Hermes has been commissioned over 3 runs, during bright time in October, November and
December 2013, in parallel with the beginning of the GALAH Pilot survey starting in November 2013. In this paper we
present the first-light results from the commissioning run and the beginning of the GALAH Survey, including
performance results such as throughput and resolution, as well as instrument reliability. We compare the abundance
calculations from the pilot survey to those in the literature.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
We describe the design, construction and measured performance of the Kitt Peak Ohio State Multi-Object Spectrograph
(KOSMOS) for the 4-m Mayall telescope and the Cerro Tololo Ohio State Multi-Object Spectrograph (COSMOS) for
the 4-m Blanco telescope. These nearly identical imaging spectrographs are modified versions of the OSMOS
instrument; they provide a pair of new, high-efficiency instruments to the NOAO user community. KOSMOS and
COSMOS may be used for imaging, long-slit, and multi-slit spectroscopy over a 100 square arcminute field of view with
a pixel scale of 0.29 arcseconds. Each contains two VPH grisms that provide R~2500 with a one arcsecond slit and their
wavelengths of peak diffraction efficiency are approximately 510nm and 750nm. Both may also be used with either a
thin, blue-optimized CCD from e2v or a thick, fully depleted, red-optimized CCD from LBNL. These instruments were
developed in response to the ReSTAR process. KOSMOS was commissioned in 2013B and COSMOS was
commissioned in 2014A.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
TAIPAN is a spectroscopic instrument designed for the UK Schmidt Telescope at the Australian Astronomical Observatory. In addition to undertaking the TAIPAN survey, it will serve as a prototype for the MANIFEST fibre positioner system for the future Giant Magellan Telescope. The design for TAIPAN incorporates up to 300 optical fibres situated within independently-controlled robotic positioners known as Starbugs, allowing precise parallel positioning of every fibre, thus significantly reducing instrument configuration time and increasing observing time. We describe the design of the TAIPAN instrument system, as well as the science that will be accomplished by the TAIPAN survey. We also highlight results from the on-sky tests performed in May 2014 with Starbugs on the UK Schmidt Telescope and briefly introduce the role that Starbugs will play in MANIFEST.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The Massively Multiplexed Spectrograph (mxSPEC) is a new instrument concept that takes advantage of modern high-speed large-format focal plane arrays (FPAs) and high efficiency bandpass isolation filters to multiplex spectra from many slices of the telescope field simultaneously onto the FPAs within a single grating spectrograph. This design greatly reduces the time required to scan a large telescope field, and with current technologies can achieve more than a factor of 50 or more improvement of the system efficiency over a conventional long-slit spectrograph. Furthermore, several spectral lines can be observed at the same time with proper selection of the diffraction grating, further improving the efficiency of this design to more than two orders of magnitude over conventional single-slit, single-wavelength instrument. This paper describes an experimental, proof-of-concept, 40-slit full-disk spectrograph that demonstrates the feasibility of this new instrument concept and its potential for solar physics research including helioseismology, dynamic solar events, and global scale magnetic field observation of the solar disk and the corona. We also present the preliminary design of a 4-line, 55-slit spectroheliograph that can serve as the template for the instruments of the next generation synoptic solar observatory.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Next-generation infrared astronomical instrumentation for ground-based and space telescopes could be based on
MOEMS programmable slit masks for multi-object spectroscopy (MOS). This astronomical technique is used
extensively to investigate the formation and evolution of galaxies.
We are developing a 2048x1080 Digital-Micromirror-Device-based (DMD) MOS instrument to be mounted on the
Galileo telescope and called BATMAN. A two-arm instrument has been designed for providing in parallel imaging and
spectroscopic capabilities. The field of view (FOV) is 6.8 arcmin x 3.6 arcmin with a plate scale of 0.2 arcsec per
micromirror. The wavelength range is in the visible and the spectral resolution is R=560 for 1 arcsec object (typical slit
size). The two arms will have 2k x 4k CCD detectors.
ROBIN, a BATMAN demonstrator, has been designed, realized and integrated. It permits to determine the instrument
integration procedure, including optics and mechanics integration, alignment procedure and optical quality. First images
and spectra have been obtained and measured: typical spot diameters are within 1.5 detector pixels, and spectra generated
by one micro-mirror slits are displayed with this optical quality over the whole visible wavelength range. Observation
strategies are studied and demonstrated for the scientific optimization strategy over the whole FOV.
BATMAN on the sky is of prime importance for characterizing the actual performance of this new family of MOS
instruments, as well as investigating the operational procedures on astronomical objects. This instrument will be placed
on the Telescopio Nazionale Galileo mid-2015.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
We report the current status of the Infrared Doppler (IRD) instrument for the Subaru telescope, which aims at detecting
Earth-like planets around nearby M darwfs via the radial velocity (RV) measurements. IRD is a fiber-fed, near infrared
spectrometer which enables us to obtain high-resolution spectrum (R~70000) from 0.97 to 1.75 μm. We have been
developing new technologies to achieve 1m/s RV measurement precision, including an original laser frequency comb as
an extremely stable wavelength standard in the near infrared. To achieve ultimate thermal stability, very low thermal
expansion ceramic is used for most of the optical components including the optical bench.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
SPIRou is a near-IR echelle spectropolarimeter and high-precision velocimeter under construction as a next-
generation instrument for the Canada-France-Hawaii-Telescope. It is designed to cover a very wide simultaneous
near-IR spectral range (0.98-2.35 μm) at a resolving power of 73.5K, providing unpolarized and polarized
spectra of low-mass stars at a radial velocity (RV) precision of 1m/s. The main science goals of SPIRou are
the detection of habitable super-Earths around low-mass stars and the study of stellar magnetism of star at
the early stages of their formation. Following a successful final design review in Spring 2014, SPIRou is now
under construction and is scheduled to see first light in late 2017. We present an overview of key aspects of
SPIRou’s optical and mechanical design.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Las Cumbres Observatory Global Network (LCOGT) is building the Network of Robotic Echelle Spectrographs (NRES), which will consist of six identical, optical (390 - 860 nm) high-precision spectrographs, each fiber-fed simultaneously by two 1 meter telescopes and a thorium argon calibration source, one at each of our observatory sites in the Northern and Southern hemispheres. Thus, NRES will be a single, globally-distributed, autonomous observing facility using twelve 1-m telescopes. Simulations suggest we will achieve long-term precision of better than 3 m/s in less than an hour for stars brighter than V = 12. We have been fully funded with an NSF MRI grant, and expect our first spectrograph to be deployed in Spring of 2015, with the full network operation of all 6 units beginning in Spring of 2016. We discuss the NRES design, goals, and robotic operation, as well as the early results from our prototype spectrograph.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
High resolution broad-band spectroscopy at near-infrared wavelengths has been performed using externally dis- persed interferometry (EDI) at the Hale telescope at Mt. Palomar. The EDI technique uses a field-widened Michelson interferometer in series with a dispersive spectrograph, and is able to recover a spectrum with a resolution 4 to 10 times higher than the existing grating spectrograph. This method increases the resolution well beyond the classical limits enforced by the slit width and the detector pixel Nyquist limit and, in principle, decreases the effect of pupil variation on the instrument line-shape function. The EDI technique permits arbi- trarily higher resolution measurements using the higher throughput, lower weight, size, and expense of a lower resolution spectrograph. Observations of many stars were performed with the TEDI interferometer mounted within the central hole of the 200 inch primary mirror. Light from the interferometer was then dispersed by the
TripleSpec near-infrared echelle spectrograph. Continuous spectra between 950 and 2450 nm with a resolution
as high as ~27,000 were recovered from data taken with TripleSpec at a native resolution of ∼2,700. Aspects
of data analysis for interferometric spectral reconstruction are described. This technique has applications in im- proving measurements of high-resolution stellar template spectra, critical for precision Doppler velocimetry using conventional spectroscopic methods. A new interferometer to be applied for this purpose at visible wavelengths is under construction.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The use of spectrographs with telescopes having high order adaptive optics systems offers the possibility of
achieving near diffraction-limited spectral resolving power. The adaptively corrected echelle spectrograph
(ACES) couples the AO-corrected stellar image to the instrument with a near single mode fiber (SMF) for
resolution of R~190,000. The First Light Adaptive Optics system (FLAO) at the Large Binocular Telescope
(LBT) achieves Strehl of >80% in H band, and also delivers useful Strehls in V and R bands. In this paper
we explore the possibility of using ACES with the LBT for simultaneous high resolution, high throughput,
and broad wavelength coverage.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
High-resolution infrared spectroscopy plays an important role in astrophysics from the search for exoplanets to
cosmology. Yet, many existing infrared spectrographs are limited by a rather small simultaneous wavelength coverage.
The AO assisted CRIRES instrument, installed at the ESO VLT on Paranal, is one of the few IR (0.92-5.2 μm) highresolution
spectrographs in operation since 2006. However it has a limitation that hampers its efficient use: the
wavelength range covered in a single exposure is limited to ~15 nanometers. The CRIRES Upgrade project (CRIRES+)
will transform CRIRES into a cross-dispersed spectrograph and will also add new capabilities. By introducing crossdispersion
elements the simultaneously covered wavelength range will be increased by at least a factor of 10 with respect
to the present configuration, while the operational wavelength range will be preserved. For advanced wavelength
calibration, new custom made absorption gas cells and etalons will be added. A spectro-polarimetric unit will allow one
for the first time to record circularly polarized spectra at the highest spectral resolution. This will be all supported by a
new data reduction software which will allow the community to take full advantage of the new capabilities of CRIRES+.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
High resolution infrared spectroscopy has been a major challenging task to accomplish in astronomy due to the enormous size and cost of IR spectrographs built with traditional gratings. A silicon immersion grating, due to its over three times high dispersion over a traditional reflective grating, offers a compact and low cost design of new generation IR high resolution spectrographs. Here we report the on-sky performance of the first silicon immersion grating spectrometer, called Florida IR Silicon immersion grating spectromeTer (FIRST), commissioned at the 2-meter Automatic Spectroscopic Telescope (AST) of Fairborn Observatory in Arizona in October 2013. The measured spectral resolution is R=50,000 with a 50 mm diameter spectrograph pupil and a blaze angle of 54.7 degree. The 1.4-1.8 m wavelength region (the Red channel) is completely covered in a single exposure with a 2kx2k H2RG IR array while the 0.8-1.35 μm region is nearly completely covered by the cross-dispersed echelle mode (the Blue channel) at R=50,000 in a single exposure. The instrument is operated in a high vacuum (about 1 micro torr) and cryogenic temperatures (the bench at 189K and the detector at 87K) and with a precise temperature control. It is primarily used for high precision Doppler measurements (~3 m/s) of low mass M dwarf stars for the identification and characterization of extrasolar planets. A plan for a high cadence and high precision survey of habitable super-Earths around ~150 nearby M dwarfs and a major upgrade with integral field unit low resolution spectroscopy are also introduced.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Rafael A. Probst, Gaspare Lo Curto, Gerardo Avila, Bruno L. Canto Martins, José Renan de Medeiros, Massimiliano Esposito, Jonay I. González Hernández, Theodor W. Hänsch, Ronald Holzwarth, et al.
We present a re-engineered version of the laser frequency comb that has proven a few-cm/s calibration repeatability
on the HARPS spectrograph during past campaigns. The new design features even better performance
characteristics. The newly arranged oscillator, filter cavities and fiber injection for spectral broadening allow
robust long term operation, controlled from a remote site. Its automation features enable easy operation for
non-experts. The system is being prepared for installation on the HARPS spectrograph in fall of 2014, and will
subsequently become available to the astronomical community.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The Immersion Grating Infrared Spectrometer (IGRINS) is a compact high-resolution near-infrared cross-dispersed
spectrograph whose primary disperser is a silicon immersion grating. IGRINS covers the entire portion of the
wavelength range between 1.45 and 2.45μm that is accessible from the ground and does so in a single exposure with a
resolving power of 40,000. Individual volume phase holographic (VPH) gratings serve as cross-dispersing elements for
separate spectrograph arms covering the H and K bands. On the 2.7m Harlan J. Smith telescope at the McDonald
Observatory, the slit size is 1ʺ x 15ʺ and the plate scale is 0.27ʺ pixel. The spectrograph employs two 2048 x 2048
pixel Teledyne Scientific and Imaging HAWAII-2RG detectors with SIDECAR ASIC cryogenic controllers. The
instrument includes four subsystems; a calibration unit, an input relay optics module, a slit-viewing camera, and nearly
identical H and K spectrograph modules. The use of a silicon immersion grating and a compact white pupil design allows
the spectrograph collimated beam size to be only 25mm, which permits a moderately sized (0.96m x 0.6m x 0.38m)
rectangular cryostat to contain the entire spectrograph. The fabrication and assembly of the optical and mechanical
components were completed in 2013. We describe the major design characteristics of the instrument including the
system requirements and the technical strategy to meet them. We also present early performance test results obtained
from the commissioning runs at the McDonald Observatory.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
GIANO is the high resolution near IR spectrograph recently commissioned at the 3.58m Telescopio Nazionale Galileo in
La Palma (Spain). GIANO is the first worldwide instrument providing cross-dispersed echelle spectroscopy at a
resolution of 50,000 over the 0.95 – 2.45 micron spectral range in a single exposure. There are outstanding science cases
in the research fields of exo-planets, Galactic stars and stellar populations that could strongly benefit from GIANO
observations down to a magnitude limit comparable to that of 2MASS. The instrument includes a fully cryogenic
spectrograph and an innovative fiber system transmitting out to the K band. It also represents a formidable laboratory to
test performances and prototype solutions for the next generation of high resolution near IR spectrographs at the ELTs.
First results from sky tests at the telescope and science verification occurred between July 2012 and October 2013 will
be presented.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
This paper gives an overview of the CARMENES instrument and of the survey that will be carried out with it
during the first years of operation. CARMENES (Calar Alto high-Resolution search for M dwarfs with Exoearths
with Near-infrared and optical Echelle Spectrographs) is a next-generation radial-velocity instrument
under construction for the 3.5m telescope at the Calar Alto Observatory by a consortium of eleven Spanish
and German institutions. The scientific goal of the project is conducting a 600-night exoplanet survey targeting
~ 300 M dwarfs with the completed instrument.
The CARMENES instrument consists of two separate echelle spectrographs covering the wavelength range
from 0.55 to 1.7 μm at a spectral resolution of R = 82,000, fed by fibers from the Cassegrain focus of the telescope.
The spectrographs are housed in vacuum tanks providing the temperature-stabilized environments necessary to
enable a 1 m/s radial velocity precision employing a simultaneous calibration with an emission-line lamp or with
a Fabry-Perot etalon. For mid-M to late-M spectral types, the wavelength range around 1.0 μm (Y band) is the
most important wavelength region for radial velocity work. Therefore, the efficiency of CARMENES has been
optimized in this range.
The CARMENES instrument consists of two spectrographs, one equipped with a 4k x 4k pixel CCD for
the range 0.55 - 1.05 μm, and one with two 2k x 2k pixel HgCdTe detectors for the range from 0.95 - 1.7μm.
Each spectrograph will be coupled to the 3.5m telescope with two optical fibers, one for the target, and one
for calibration light. The front end contains a dichroic beam splitter and an atmospheric dispersion corrector,
to feed the light into the fibers leading to the spectrographs. Guiding is performed with a separate camera;
on-axis as well as off-axis guiding modes are implemented. Fibers with octagonal cross-section are employed to
ensure good stability of the output in the presence of residual guiding errors. The fibers are continually actuated
to reduce modal noise. The spectrographs are mounted on benches inside vacuum tanks located in the coud´e
laboratory of the 3.5m dome. Each vacuum tank is equipped with a temperature stabilization system capable
of keeping the temperature constant to within ±0.01°C over 24 hours. The visible-light spectrograph will be
operated near room temperature, while the near-IR spectrograph will be cooled to ~ 140 K.
The CARMENES instrument passed its final design review in February 2013. The MAIV phase is currently
ongoing. First tests at the telescope are scheduled for early 2015. Completion of the full instrument is planned
for the fall of 2015. At least 600 useable nights have been allocated at the Calar Alto 3.5m Telescope for the
CARMENES survey in the time frame until 2018.
A data base of M stars (dubbed CARMENCITA) has been compiled from which the CARMENES sample can
be selected. CARMENCITA contains information on all relevant properties of the potential targets. Dedicated imaging, photometric, and spectroscopic observations are underway to provide crucial data on these stars that
are not available in the literature.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The Habitable-Zone Planet Finder is a stabilized, fiber-fed, NIR spectrograph being built for the 10m Hobby- Eberly telescope (HET) that will be capable of discovering low mass planets around M dwarfs. The optical design of the HPF is a white pupil spectrograph layout in a vacuum cryostat cooled to 180 K. The spectrograph uses gold-coated mirrors, a mosaic echelle grating, and a single Teledyne Hawaii-2RG (H2RG) NIR detector with a 1.7-micron cutoff covering parts of the information rich z, Y and J NIR bands at a spectral resolution of R∼50,000. The unique design of the HET requires attention to both near and far-field fiber scrambling, which we accomplish with double scramblers and octagonal fibers. In this paper we discuss and summarize the main requirements and challenges of precision RV measurements in the NIR with HPF and how we are overcoming these issues with technology, hardware and algorithm developments to achieve high RV precision and address stellar activity.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
ESPRESSO is the next generation ground based European exoplanets hunter. It will combine the efficiency of modern
echelle spectrograph with extreme radial-velocity and spectroscopic precision. It will be installed at Paranal's VLT in
order to achieve two magnitudes gain with respect to its predecessor HARPS, and the instrumental radial-velocity
precision will be improved to reach 10 cm/s level. We have constituted a Consortium of astronomical research institutes
to fund, design and build ESPRESSO on behalf of and in collaboration with ESO, the European Southern Observatory.
The spectrograph will be installed at the Combined Coudé Laboratory (CCL) of the VLT, it will be linked to the four 8.2
meters Unit Telescopes through four optical "Coudé trains" and will be operated either with a single telescope or with up
to four UTs, enabling an additional 1.5 magnitude gain. Thanks to its characteristics and ability of combining
incoherently the light of 4 large telescopes, ESPRESSO will offer new possibilities in many fields of astronomy. Our
main scientific objectives are, however, the search and characterization of rocky exoplanets in the habitable zone of
quiet, near-by G to M-dwarfs, and the analysis of the variability of fundamental physical constants. The project is, for
most of its workpackages, in the procurement or development phases, and the CCL infrastructure is presently under
adaptation work. In this paper, we present the scientific objectives, the capabilities of ESPRESSO, the technical solutions
for the system and its subsystems. The project aspects of this facility are also described, from the consortium and
partnership structure to the planning phases and milestones.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
PIMMS échelle is an extension of previous PIMMS (photonic integrated multimode spectrograph) designs, enhanced by using an échelle diffraction grating as the primary dispersing element for increased spectral band- width. The spectrograph operates at visible wavelengths (550 to 780nm), and is capable of capturing ~100 nm of R > 60, 000 (λ/(triangle)λ) spectra in a single exposure. PIMMS échelle uses a photonic lantern to convert an arbitrary (e.g. incoherent) input beam into N diffraction-limited outputs (i.e. N single-mode fibres). This allows a truly diffraction limited spectral resolution, while also decoupling the spectrograph design from the input source.
Here both the photonic lantern and the spectrograph slit are formed using a single length of multi-core fibre. A 1x19 (1 multi-mode fiber to 19 single-mode fibres) photonic lantern is formed by tapering one end of the multi-core fibre, while the other end is used to form a TIGER mode slit (i.e. for a hexagonal grid with sufficient spacing and the correct orientations, the cores of the multi-core fibre can be dispersed such that they do not overlap without additional reformatting). The result is an exceptionally compact, shoebox sized, spectrograph that is constructed primarily from commercial off the shelf components. Here we present a brief overview of the échelle spectrograph design, followed by results from on-sky testing of the breadboard mounted version of the spectrograph at the ‘UK Schmidt Telescope’.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The Gemini High-Resolution Optical SpecTrograph (GHOST) is the newest instrument being developed for the Gemini telescopes, in a collaboration between the Australian Astronomical Observatory (AAO), the NRC - Herzberg in Canada and the Australian National University (ANU). We describe the process of design optimisation that utilizes the unique strengths of the new partner, NRC - Herzberg, the design and need for the slit viewing camera system, and we describe a simplification for the lenslet-based slit reformatting. Finally, we out- line the updated project plan, and describe the unique scientific role this instrument will have in an international context, from exoplanets through to the distant Universe.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The Gemini Planet Imager (GPI) is a complex optical system designed to directly detect the self-emission of young
planets within two arcseconds of their host stars. After suppressing the starlight with an advanced AO system and
apodized coronagraph, the dominant residual contamination in the focal plane are speckles from the atmosphere and
optical surfaces. Since speckles are diffractive in nature their positions in the field are strongly wavelength dependent,
while an actual companion planet will remain at fixed separation. By comparing multiple images at different
wavelengths taken simultaneously, we can freeze the speckle pattern and extract the planet light adding an order of
magnitude of contrast. To achieve a bandpass of 20%, sufficient to perform speckle suppression, and to observe the
entire two arcsecond field of view at diffraction limited sampling, we designed and built an integral field spectrograph
with extremely low wavefront error and almost no chromatic aberration. The spectrograph is fully cryogenic and
operates in the wavelength range 1 to 2.4 microns with five selectable filters. A prism is used to produce a spectral
resolution of 45 in the primary detection band and maintain high throughput. Based on the OSIRIS spectrograph at
Keck, we selected to use a lenslet-based spectrograph to achieve an rms wavefront error of approximately 25 nm. Over
36,000 spectra are taken simultaneously and reassembled into image cubes that have roughly 192x192 spatial elements
and contain between 11 and 20 spectral channels. The primary dispersion prism can be replaced with a Wollaston prism
for dual polarization measurements. The spectrograph also has a pupil-viewing mode for alignment and calibration.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
SPHERE is an extrasolar planet imager whose goal is to detect giant extrasolar planets in the vicinity of bright stars and
to characterize them through spectroscopic and polarimetric observations. It is a complete system with a core made of an
extreme-Adaptive Optics (AO) turbulence correction, a pupil tracker and NIR and Visible coronagraph devices. At its
back end, a differential dual imaging camera and an integral field spectrograph (IFS) work in the Near Infrared (NIR)
(0.95 ≤λ≤2.32 μm) and a high resolution polarization camera covers the visible (0.6 ≤λ≤0.9 μm). The IFS is a low resolution spectrograph (R~50) operates in the near IR (0.95≤λ≤1.6 μm), an ideal wavelength range for the detection of planetary features, over a field of view of about 1.7 x 1.7 square arcsecs. Form spectra it is possible to reconstruct monochromatic images with high contrast (10-7) and high spatial resolution, well inside the star PSF. In this paper we describe the IFS, its calibration and the results of several performance which IFS underwent. Furthermore, using the IFS characteristics we give a forecast on the planetary detection rate.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
We present an update on LINC-NIRVANA (LN), an innovative, high-resolution infrared imager for the Large Binocular
Telescope (LBT). LN uses Multi-Conjugate Adaptive Optics (MCAO) for high-sky-coverage diffraction-limited
imagery and interferometric beam combination. The last two years have seen both successes and challenges. On the one
hand, final integration is proceeding well in the lab. We also achieved First Light at the LBT with the Pathfinder
experiment. On the other hand, funding constraints have forced a significant re-planning of the overall instrument
implementation. This paper presents our progress and plans for bringing the instrument online at the telescope.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The mid-infrared (8-13 μm) camera, NOMIC, is a critical component of the Large Binocular Telescope Interferometer
search for exozodiacal light around near-by stars. It is optimized for nulling interferometry but has general capability for
direct imaging, low resolution spectrometry, and Fizeau interferometry. The camera uses a Raytheon 1024x1024 Si:As
IBC Aquarius array with a 30 μm pitch which yields 0.018 arc-second pixels on the sky. This provides spatial resolution
(λ/D) at a 10 μm wavelength of 0.27 arc-seconds for a single 8.4 meter LBT aperture and of 0.10 arcseconds for Fizeau interferometry with the dual apertures. The array is operated with a differential preamplifier and a version of the 16
channel array controller developed at Cornell University for the FORCAST instrument on the Sofia Observatory. With a
2.4 MHz pixel rate the camera can achieve integration times as short as 27 milliseconds full array and 3 milliseconds
partial array. The large range of integration times and two array integration well sizes allow for a wide range of
background flux on the array. We describe the design and operation of the camera and present the performance of this
system in terms of linearity, noise, quantum efficiency, image quality, and photometric sensitivity.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
FRIDA is a diffraction limited imager and integral field spectrometer that is being built for the Gran Telescopio
Canarias. FRIDA has been designed and is being built as a collaborative project between institutions from México, Spain
and the USA. In imaging mode FRIDA will provide scales of 0.010, 0.020 and 0.040 arcsec/pixel and in IFS mode
spectral resolutions R ~ 1000, 4,500 and 30,000. FRIDA is starting systems integration and is scheduled to complete
fully integrated system tests at the laboratory by the end of 2015 and be delivered to GTC shortly after. In this
contribution we present a summary of its design, fabrication, current status and potential scientific applications.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) instrument is one of a handful of extreme adaptive
optics systems set to come online in 2014. The extreme adaptive optics correction is realized by a combination of precise
wavefront sensing via a non-modulated pyramid wavefront sensor and a 2000 element deformable mirror. This system
has recently begun on-sky commissioning and was operated in closed loop for several minutes at a time with a loop
speed of 800 Hz, on ~150 modes. Further suppression of quasi-static speckles is possible via a process called "speckle
nulling" which can create a dark hole in a portion of the frame allowing for an enhancement in contrast, and has been
successfully tested on-sky.
In addition to the wavefront correction there are a suite of coronagraphs on board to null out the host star which include
the phase induced amplitude apodization (PIAA), the vector vortex, 8 octant phase mask, 4 quadrant phase mask and
shaped pupil versions which operate in the NIR (y-K bands). The PIAA and vector vortex will allow for high contrast
imaging down to an angular separation of 1 λ/D to be reached; a factor of 3 closer in than other extreme AO systems.
Making use of the left over visible light not used by the wavefront sensor is VAMPIRES and FIRST. These modules are
based on aperture masking interferometry and allow for sub-diffraction limited imaging with moderate contrasts of
~100-1000:1. Both modules have undergone initial testing on-sky and are set to be fully commissioned by the end of
2014.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The instrument SPHERE (Spectro-Polarimetric High-contrast Exoplanet REsearch), recently installed on the VLT-UT3,
aims to detected and characterize giant extra-solar planets and the circumstellar environments in the very close vicinity
of bright stars. The extreme brightness contrast and small angular separation between the planets or disks and their parent
stars have so far proven very challenging. SPHERE will meet this challenge by using an extreme AO, stellar
coronagraphs, an infrared dual band and polarimetric imager called IRDIS, an integral field spectrograph, and a visible
polarimetric differential imager called ZIMPOL. Polarimetry allows a separation of the light coming from an unpolarized
source such as a star and the polarized source such as a planet or protoplanetary disks. In this paper we present the
performance of the infrared polarimetric imager based on experimental validations performed within SPHERE before the
preliminary acceptance in Europe. We report on the level of instrumental polarization in the infrared and its calibration
limit. Using differential polarimetry technique, we quantify the level of speckle suppression, and hence improved
sensitivity in the context of imaging extended stellar environments.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
A new polarimeter has been built for the “Observatoire du Mont-Mégantic” (POMM) and is now in commissioning
phase. It will allow polarization measurements with a precision of 10-6, an improvement by a factor of 100 over the
previous observatory polarimeter. The characteristics of the instrument that allow this goal are briefly discussed and the
planned science observations are presented. They include exoplanets near their host star (hot Jupiters), transiting
exoplanets, stars with debris disks, young stars with proto-planetary disks, brown dwarfs, massive Wolf-Rayet stars and
comets. The details of the optical and mechanical designs are presented in two other papers.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Lucky Imaging combined with a low order adaptive optics system has given the highest resolution images ever taken in
the visible or near infrared of faint astronomical objects. This paper describes a new instrument that has already been
deployed on the WHT 4.2m telescope on La Palma, with particular emphasis on the optical design and the predicted
system performance. A new design of low order wavefront sensor using photon counting CCD detectors and multi-plane
curvature wavefront sensor will allow virtually full sky coverage with faint natural guide stars. With a 2 x 2 array of
1024 x 1024 photon counting EMCCDs, AOLI is the first of the new class of high sensitivity, near diffraction limited
imaging systems giving higher resolution in the visible from the ground than hitherto been possible from space.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The Enhanced Resolution Imager and Spectrograph (ERIS) is the next-generation adaptive optics near-IR imager and
spectrograph for the Cassegrain focus of the Very Large Telescope (VLT) Unit Telescope 4, which will soon make full
use of the Adaptive Optics Facility (AOF). It is a high-Strehl AO-assisted instrument that will use the Deformable
Secondary Mirror (DSM) and the new Laser Guide Star Facility (4LGSF). The project has been approved for
construction and has entered its preliminary design phase. ERIS will be constructed in a collaboration including the Max-
Planck Institut für Extraterrestrische Physik, the Eidgenössische Technische Hochschule Zürich and the Osservatorio
Astrofisico di Arcetri and will offer 1 - 5 μm imaging and 1 - 2.5 μm integral field spectroscopic capabilities with a high
Strehl performance. Wavefront sensing can be carried out with an optical high-order NGS Pyramid wavefront sensor, or
with a single laser in either an optical low-order NGS mode, or with a near-IR low-order mode sensor. Due to its highly
sensitive visible wavefront sensor, and separate near-IR low-order mode, ERIS provides a large sky coverage with its 1’
patrol field radius that can even include AO stars embedded in dust-enshrouded environments. As such it will replace,
with a much improved single conjugated AO correction, the most scientifically important imaging modes offered by
NACO (diffraction limited imaging in the J to M bands, Sparse Aperture Masking and Apodizing Phase Plate (APP)
coronagraphy) and the integral field spectroscopy modes of SINFONI, whose instrumental module, SPIFFI, will be
upgraded and re-used in ERIS. As part of the SPIFFI upgrade a new higher resolution grating and a science detector
replacement are envisaged, as well as PLC driven motors. To accommodate ERIS at the Cassegrain focus, an extension
of the telescope back focal length is required, with modifications of the guider arm assembly. In this paper we report on
the status of the baseline design. We will also report on the main science goals of the instrument, ranging from exoplanet
detection and characterization to high redshift galaxy observations. We will also briefly describe the SINFONI-SPIFFI
upgrade strategy, which is part of the ERIS development plan and the overall project timeline.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
We propose a new high contrast imager for Kyoto 4m segmented telescope called SEICA (Second-generation
Exoplanet Imager with Coronagraphic Adaptive optics), aiming at detection and characterization of selfluminous
gas giants within 10AU around nearby stars. SEICA is aggressively optimized for high performance
at very small inner working angle, 10-6 detection contrast at 0".1 in 1-hour integration. We start the on-sky
commissioning test in 2016 and the science observations in 2017. Since it is the first time to realize the highcontrast
imaging on the segmented telescope, SEICA is an important step toward future high contrast
sciences on Extremely Large Telescopes (ELTs). This paper presents an overall of the SEICA program and
the conceptual design for ultimate performance under given atmospheric conditions.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Princeton University is building the Coronagraphic High Angular Resolution Imaging Spectrograph (CHARIS),
an integral field spectrograph (IFS) for the Subaru telescope. CHARIS is funded by the National Astronomical
Observatory of Japan and is designed to take high contrast spectra of brown dwarfs and hot Jovian planets in
the coronagraphic image provided by the Coronagraphic Extreme Adaptive Optics (SCExAO) and the AO188
adaptive optics systems. The project is now in the build and test phase at Princeton University. Once laboratory
testing has been completed CHARIS will be integrated with SCExAO and AO188 in the winter of 2016. CHARIS
has a high-resolution characterization mode in J, H, and K bands. The average spectral resolution in J, H, and
K bands are R82, R68, and R82 respectively, the uniformity of which is a direct result of a new high index
material, L-BBH2. CHARIS also has a second low-resolution imaging mode that spans J,H, and K bands with
an average spectral resolution of R19, a feature unique to this instrument. The field of view in both imaging
modes is 2.07x2.07 arcseconds. SCExAO+CHARIS will detect objects five orders of magnitude dimmer than
their parent star down to an 80 milliarcsecond inner working angle. The primary challenge with exoplanet
imaging is the presence of quasi-static speckles in the coronagraphic image. SCExAO has a wavefront control
system to suppress these speckles and CHARIS will address their impact on spectral crosstalk through hardware
design, which drives its optical and mechanical design. CHARIS constrains crosstalk to be below 1% for an
adjacent source that is a full order of magnitude brighter than the neighboring spectra. Since CHARIS is on the
Nasmyth platform, the optical alignment between the lenslet array and prism is highly stable. This improves the
stability of the spectra and their orientation on the detector and results in greater stability in the wavelength
solution for the data pipeline. This means less uncertainty in the post-processing and less overhead for on-sky
calibration procedures required by the data pipeline. Here we present the science case, design, and construction
status of CHARIS. The design and lessons learned from testing CHARIS highlights the choices that must be
considered to design an IFS for high signal-to-noise spectra in a coronagraphic image. The design considerations
and lessons learned are directly applicable to future exoplanet instrumentation for extremely large telescopes
and space observatories capable of detecting rocky planets in the habitable zone.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Instrument development for the 25 m class optical/infrared Giant Magellan Telescope (GMT) is actively underway. Two
instruments have begun their preliminary design phase: an optical (350-1000 nm) high resolution and precision radial
velocity echelle spectrograph (G-CLEF), and a near-IR (YJHK) diffraction-limited imager/integral-field-spectrograph
(GMTIFS). A third instrument will begin its design phase in early 2015: an optical (370-1000 nm) low-to-medium
resolution multi-object spectrograph (GMACS). Two other instrument teams are focusing on prototypes to demonstrate
final feasibility: a near-to-mid-IR (JHKLM) high resolution diffraction-limited echelle (GMTNIRS) spectrograph, and a
facility robotic multi-fiber-feed (MANIFEST). A brief overview of the GMT instrumentation program is presented:
current activities, progress, status, and schedule, as well as a summary of the facility infrastructure needed to support the
instruments.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
We present the status of the instrumentation programme for the European Extremely Large Telescope. The
instrumentation planning is governed by the E-ELT Instrument Roadmap, which synthesises the scientific, technical and
managerial influences on the instrument programme into a staged development plan. Preparations for the start of the
design and build phases of the first light instruments and their adaptive optics systems are well underway and are
summarised here. In parallel, the process for development of the next three instruments has begun. Recent work on the
instrument interface to the telescope is described.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
We review a conceptual design for a moderate resolution optical spectrograph for the Giant Magellan Telescope (GMT).
The spectrograph is designed to make use of the large field-of-view of the GMT and be suitable for observations of very
faint objects across a wide range of wavelengths. We also review the status of the instrument and on-going trade studies
designed to update the instrument science objectives and technical requirements.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
METIS will be among the first generation of scientific instruments on the E-ELT. Focusing on highest angular
resolution and high spectral resolution, METIS will provide diffraction limited imaging and coronagraphy from 3-14μm
over an 20x20 field of view, as well as integral field spectroscopy at R ~ 100,000 from 2.9-5.3μm. In addition,
METIS provides medium-resolution (R ~ 5000) long slit spectroscopy, and polarimetric measurements at N band. While
the baseline concept has already been discussed at previous conferences, this paper focuses on the significant
developments over the past two years in several areas: The science case has been updated to account for recent progress
in the main science areas circum-stellar disks and the formation of planets, exoplanet detection and characterization,
Solar system formation, massive stars and clusters, and star formation in external galaxies. We discuss the developments
in the adaptive optics (AO) concept for METIS, the telescope interface, and the instrument modelling. Last but not least
we provide an overview of our technology development programs, which ranges from coronagraphic masks, immersed
gratings, and cryogenic beam chopper to novel approaches to mirror polishing, background calibration and cryo-cooling.
These developments have further enhanced the design and technology readiness of METIS to reliably serve as an early
discovery machine on the E-ELT.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
GMTNIRS, the Giant Magellan Telescope near-infrared spectrograph, is a first-generation instrument for the GMT that
will provide detailed spectroscopic information about young stellar objects, exoplanets, and cool and/or obscured stars.
The optical and mechanical design GMTNIRS presented at a conceptual design review in October 2011 covered all
accessible parts of the spectrum from 1.12 to 5.3 microns at R=50,000 (1.12-2.5 microns) and R=100,000 (3-5.3
microns). GMTNIRS uses the GMT adaptive-optics system and has a single 85 milliarcsecond slit. The instrument
includes five separate spectrographs for the different atmospheric windows. By use of dichroics that divide the incident
light between five separate spectrographs, it observes its entire spectral grasp in a single exposure while having only one
cryogenic moving part, a rotating pupil stop.
Large, highly accurate silicon immersion gratings are critical to GMTNIRS, since they both permit a design within the
allowable instrument volume and enable continuous wavelength coverage on existing detectors. We describe the effort
during the preliminary design phase to refine the design of the spectrograph to meet the science goals while minimizing
the cost and risk involved in the grating production. We discuss different design options for the individual spectrographs
at R=50,000, 67,000, 75,000, and 100,000 and their impact on science return.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The current instrumentation plan for the E-ELT foresees a High Resolution Spectrograph conventionally indicated as
HIRES. Shaped on the study of extra-solar planet atmospheres, Pop-III stars and fundamental physical constants, HIRES
is intended to embed observing modes at high-resolution (up to R=150000) and large spectral range (from the blue limit to the K band) useful for a large suite of science cases that can exclusively be tackled by the E-ELT. We present in this
paper the solution for HIRES envisaged by the "HIRES initiative", the international collaboration established in 2013 to
pursue a HIRES on E-ELT.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
We present an overview of the design of IRIS, an infrared (0.84 - 2.4 micron) integral field spectrograph and imaging
camera for the Thirty Meter Telescope (TMT). With extremely low wavefront error (<30 nm) and on-board wavefront
sensors, IRIS will take advantage of the high angular resolution of the narrow field infrared adaptive optics system
(NFIRAOS) to dissect the sky at the diffraction limit of the 30-meter aperture. With a primary spectral resolution of
4000 and spatial sampling starting at 4 milliarcseconds, the instrument will create an unparalleled ability to explore high
redshift galaxies, the Galactic center, star forming regions and virtually any astrophysical object. This paper summarizes
the entire design and basic capabilities. Among the design innovations is the combination of lenslet and slicer integral
field units, new 4Kx4k detectors, extremely precise atmospheric dispersion correction, infrared wavefront sensors, and a
very large vacuum cryogenic system.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
HARMONI is a visible and near-infrared (0.47 to 2.45 μm) integral field spectrometer, providing the E-ELT's core
spectroscopic capability, over a range of resolving powers from R (≡λ/Δλ)~500 to R~20000. The instrument provides simultaneous spectra of ~32000 spaxels at visible and near-IR wavelengths, arranged in a √2:1 aspect ratio contiguous field. HARMONI is conceived as a workhorse instrument, addressing many of the E-ELT’s key science cases, and will
exploit the E-ELT's scientific potential in its early years, starting at first light. HARMONI provides a range of spatial
pixel (spaxel) scales and spectral resolving powers, which permit the user to optimally configure the instrument for a
wide range of science programs; from ultra-sensitive to diffraction limited, spatially resolved, physical (via morphology),
chemical (via abundances and line ratios) and kinematic (via line-of-sight velocities) studies of astrophysical sources.
Recently, the HARMONI design has undergone substantial changes due to significant modifications to the interface with
the telescope and the architecture of the E-ELT Nasmyth platform. We present an overview of the capabilities of
HARMONI, and of its design from a functional and performance viewpoint.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The GMT-Consortium Large Earth Finder (G-CLEF) is an optical-band echelle spectrograph that has been selected as
the first light instrument for the Giant Magellan Telescope (GMT). G-CLEF is a general-purpose, high dispersion
spectrograph that is fiber fed and capable of extremely precise radial velocity measurements. The G-CLEF Concept
Design (CoD) was selected in Spring 2013. Since then, G-CLEF has undergone science requirements and instrument
requirements reviews and will be the subject of a preliminary design review (PDR) in March 2015. Since CoD review
(CoDR), the overall G-CLEF design has evolved significantly as we have optimized the constituent designs of the major
subsystems, i.e. the fiber system, the telescope interface, the calibration system and the spectrograph itself. These
modifications have been made to enhance G-CLEF’s capability to address frontier science problems, as well as to
respond to the evolution of the GMT itself and developments in the technical landscape. G-CLEF has been designed by
applying rigorous systems engineering methodology to flow Level 1 Scientific Objectives to Level 2 Observational
Requirements and thence to Level 3 and Level 4. The rigorous systems approach applied to G-CLEF establishes a well
defined science requirements framework for the engineering design. By adopting this formalism, we may flexibly update
and analyze the capability of G-CLEF to respond to new scientific discoveries as we move toward first light. G-CLEF
will exploit numerous technological advances and features of the GMT itself to deliver an efficient, high performance instrument, e.g. exploiting the adaptive optics secondary system to increase both throughput and radial velocity
measurement precision.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The Universe is comprised of hundreds of billions of galaxies, each populated by hundreds of billions of stars. Astrophysics aims to understand the complexity of this almost incommensurable number of stars, stellar clusters and galaxies, including their spatial distribution, formation, and current interactions with the interstellar and intergalactic media. A considerable fraction of astrophysical discoveries require large statistical samples, which can only be addressed with multi-object spectrographs (MOS). Here we introduce the MOSAIC study of an optical/near-infrared MOS for the European Extremely Large Telescope (E-ELT), which has capabilities specified by science cases ranging from stellar physics and exoplanet studies to galaxy evolution and cosmology. Recent studies of critical technical issues such as sky-background subtraction and multi-object adaptive optics (MOAO) have demonstrated that such a MOS is feasible with current technology and techniques. In the 2020s the E-ELT will become the world’s largest optical/IR telescope, and we argue that it has to be equipped as soon as possible with a MOS. MOSAIC will provide a vast discovery space, enabled by a multiplex of ∼ 200 and spectral resolving powers of R = 5 000 and 20 000. MOSAIC will also offer the unique capability of 10-to-20 ‘high-definition’ (MOAO) integral-field units, optimised to investigate the physics of the sources of reionisation, providing the most efficient follow-up of observations with the James Webb Space Telescope (JWST). The combination of these modes will enable the study of the mass-assembly history of galaxies over cosmic time, including high-redshift dwarf galaxies and studies of the distribution of the intergalactic medium. It will also provide spectroscopy of resolved stars in external galaxies at unprecedented distances, from the outskirts of the Local Group for main-sequence stars, to a significant volume of the local Universe, including nearby galaxy clusters, for luminous red supergiants.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The Multi-Object Broadband Imaging Echellette (MOBIE) is the seeing-limited, visible-wavelength imaging multiobject
spectrograph (MOS) planned for first-light use on the Thirty Meter Telescope (TMT). The MOBIE project to
date has been a collaboration lead by UC Observatories (CA), and including the UH Institute for Astronomy (HI), and
the NAOJ (Tokyo, Japan). The current MOBIE optical design provides two color channels, spanning the 310–550nm
and 550-1000nm passbands, and a combination of reflection gratings, prisms, and mirrors to enable direct imaging and
three spectroscopic modes with resolutions (λ/triangle λ) of roughly 1000, 3000, and 8000 in both color channels, across a field of view that ranges from roughly 8x3 arcmin to 3x3 arcmin, depending on resolution mode. The conceptual design phase for the MOBIE instrument has been underway since 2008 and is expected to end in 2015. We report here on developments since 2010, including assembly of the current project team, instrument and camera optical designs,
instrument control systems, atmospheric dispersion corrector, slit-mask exchange systems, collimator, dichroic and fold
optics, dispersing and cross-dispersing optics, refracting cameras, shutters, filter exchange systems, science detector
systems, and instrument structures.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The next generation of Extremely Large Telescopes (ELT), with diameters up to 39 meters, will start opera- tion in the next decade and promises new challenges in the development of instruments. The growing field of astrophotonics (the use of photonic technologies in astronomy) can partly solve this problem by allowing mass production of fully integrated and robust instruments combining various optical functions, with the potential to reduce the size, complexity and cost of instruments. In this paper, we focus on developments in integrated micro-spectrographs and their potential for ELTs. We take an inventory of the identified technologies currently in development, and compare the performance of the different concepts. We show that in the current context of single-mode instruments, integrated spectrographs making use of, e.g., a photonic lantern can be a solution to reach the desired performance. However, in the longer term, there is a clear need to develop multimode devices to improve overall the throughput and sensitivity, while decreasing the instrument complexity.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Posters Session: Instrument Programs and New Science Instruments and Upgrades
This paper presents the latest optical design for the MOONS triple-arm spectrographs. MOONS will be a Multi-Object
Optical and Near-infrared Spectrograph and will be installed on one of the European Southern Observatory (ESO) Very
Large Telescopes (VLT). Included in this paper is a trade-off analysis of different types of collimators, cameras,
dichroics and filters.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
A polarimeter, to observe exoplanets in the visible and infrared, was built for the “Observatoire du Mont Mégantic”
(OMM) to replace an existing instrument and reach 10-6 precision, a factor 100 improvement. The optical and
mechanical designs are presented, with techniques used to precisely align the optical components and rotation axes to
achieve the targeted precision. A photo-elastic modulator (PEM) and a lock-in amplifier are used to measure the
polarization. The typical signal is a high DC superimposed to a very faint sinusoidal oscillation. Custom electronics
was developed to measure the AC and DC amplitudes, and characterization results are presented.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
We present the science motivation, design, and on-sky test data of a high-throughput fiber coupling unit suitable for automated 1-meter class telescopes. The optical and mechanical design of the fiber coupling is detailed and we describe a flexible controller software designed specifically for this unit. The system performance is characterized with a set of numerical simulations, and we present on-sky results that validate the performance of the controller and the expected throughput of the fiber coupling. This unit was designed specifically for the MINERVA array, a robotic observatory consisting of multiple 0.7 m telescopes linked to a single high-resolution stabilized spectrograph for the purpose of exoplanet discovery using high-cadence radial velocimetry. However, this unit could easily be used for general astronomical purposes requiring fiber coupling or precise guiding.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Usually observational astronomy is based on direction and intensity of radiation considered as a function of wavelength
and time. Despite the polarisation degree of radiation provides information about asymmetry, anisotropy and magnetic
fields within the radiative source or in the medium along the line of sight, it is commonly ignored. Because of the
importance of high resolution spectropolarimetry to study a large series of phenomena related to the interaction of
radiation with matter, as in stellar atmospheres or more generally stellar envelopes, we designed and built a dual beam
polarimeter for HARPS-N that is in operation at the Telescopio Nazionale Galileo. Since the polarisation degree is
measured from the combination of a series of measurements and accuracy is limited by the instrumental stability, just the
great stability (0.6 m/s) and spectral resolution (R=115000) of the HARPS-N spectrograph should result in an accuracy
in the measurements of Stokes parameters as small as 0.01%. Here we report on the design, realization, assembling,
aligning and testing of the polarimetric unit whose first light is planned in August 2014.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
We have developed a simple but effective guider for use with the Oxford-SWIFT integral field spectrograph on the Palomar 200-inch telescope. The guider uses mainly off-the-shelf components, including commercial amateur astronomy software to interface with the CCD camera, calculating guiding corrections, and send guide commands to the telescope. The only custom piece of software is an driver to provide an interface between the Palomar telescope control system and the industry standard 'ASCOM' system. Using existing commercial software provided a very cheap guider (<$5000) with minimal (<15 minutes) commissioning time. The final system provides sub-arcsecond guiding, and could easily be adapted to any other professional telescope
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
TripleSpec 4 (TS4) is a near-infrared (0.8um to 2.45um) moderate resolution (R ~ 3200) cross-dispersed spectrograph
for the 4m Blanco Telescope that simultaneously measures the Y, J, H and K bands for objects reimaged
within its slit. TS4 is being built by Cornell University and NOAO with scheduled commissioning in 2015.
TS4 is a near replica of the previous TripleSpec designs for Apache Point Observatory's ARC 3.5m, Palomar
5m and Keck 10m telescopes, but includes adjustments and improvements to the slit, fore-optics, coatings and
the detector. We discuss the changes to the TripleSpec design as well as the fabrication status and expected
sensitivity of TS4.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
LISS (Line Imager and Slit Spectrograph) is an imager and spectrograph equipped with a liquid crystal etalon and a low resolution grism. It is specialized to observe and map the emission and absorption lines of astronomical objects. A fully depleted and back illuminated 2K x 1K Hamamatsu CCD which has high sensitivity at redder wavelengths in optical bands enables this instrument to give a good performance in imaging and spectroscopic observations of emission lines such as [SIII]λλ 906.9/953.2 nm. We successfully carried out commissioning observations at the 1.6-m Pirka telescope of Hokkaido University in September/October 2012 and June/July 2013. In this paper, we describe the design and performance of LISS as well as its early observational results and future prospects.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
WEAVE is the next-generation, wide-field, optical spectroscopy facility for the William Herschel Telescope (WHT) in La Palma, Canary Islands, Spain. The WHT will undergo a significant adaptation to accommodate this facility. A two-
degree Prime Focus Corrector (PFC), that includes an Atmospheric Dispersion Compensator, is being planned and is currently in its final design phase. To compensate for the effects of temperature-induced image degradation, the entire PFC system will be translated along the telescope optical axis. The optical system comprises six lenses, the largest of which will have a diameter of 1.1m. Now that the optical elements are in production, the designs for the lens cells and
the mounting arrangements are being analysed to ensure that the image quality of the complete system is better than 1.0 arcsec (80% encircled energy diameter) over the full field of view. The new PFC system is designed to be routinely
interchanged with the existing top-end ring. This will maximise the versatility of the WHT and allow the two top-end
systems to be interchanged as dictated by the scientific needs of the astronomers that will use WEAVE and other
instruments on the telescope. This manuscript describes the work that has been carried out in developing the designs for
the mechanical subsystems and the plans for mounting the lenses to attain an optical performance that is commensurate with the requirements derived from planning the WEAVE surveys.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
We present a conceptual design for a low resolution optical spectrograph for the Astronomical Observatory of Cordoba 1.54m telescope. The simple instrument is required to cover a broad wavelength range (4000A<λ <9000A with 3000A simultaneous coverage) at a resolution of R=λ/∆λ ~ 500, allowing its use as a versatile
astronomical spectrograph. In particular, we explore the use of inexpensive commercial off-the-shelf lenses,
gratings, and a CCD system to create a small and simple spectrograph that has reasonable performance. We carefully measure properties of the lenses and demonstrate that they have excellent image quality and high throughput.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The work package of the University of Cologne within the GRAVITY consortium included the development and
manufacturing of two spectrometers for the beam combiner instrument. Both spectrometers are optimized for
different tasks. The science spectrometer provides 3 different spectral resolutions. In the highest resolution the
length of the spectral lines is close to the borders of the imaging area of the detector. Also the integration time
of these high resolution images is relative long. Therefor the optical pathes have to be controlled by the feedback
of a faster spectrometer. The fringe tracking spectrometer has only one low resolution to allow much shorter
integration times. This spectrometer provides a feedback for the control loops which stabilize the optical pathes
of the light from the telescope to the instrument. This is a new key feature of the whole GRAVITY instrument.
Based on the optical layout my work was the design of the mechanical structure, mountings, passive and
active adjustment mechanisms. This paper gives a short review about the active mechanisms and the compliant
lens mounts. They are used similarly in both spectrometers. Due to the observation and analysis of near-infrared
light the mechanisms have to run at cryogenic temperatures and in a high vacuum. Except the linear stages, the
motorized mechanisms will get used for several times per observation.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The 4.3m Discovery Channel Telescope (DCT) has been conducting part-time science operations since January 2013.
The f/6.1, 0.5° field-of-view at the RC focus is accessible through the Cassegrain instrument cube assembly, which can
support 5 co-mounted instruments with rapid feed selection via deployable fold mirrors. Lowell Observatory has
developed the Large Monolithic Imager (LMI), a 12.3' FOV 6K x 6K single CCD camera with a dual filter wheel, and
installed at the straight-through, field-corrected RC focal station, which has served as the primary early science DCT
instrument. Two low-resolution facility spectrographs are currently under development with first light for each
anticipated by early 2015: the upgraded DeVeny Spectrograph, to be utilized for single object optical spectroscopy, and
the unique Near-Infrared High-Throughput Spectrograph (NIHTS), optimized for single-shot JHK spectroscopy of faint
solar system objects. These spectrographs will be mounted at folded RC ports, and the NIHTS installation will feature
simultaneous optical imaging with LMI through use of a dichroic fold mirror. We report on the design, construction,
commissioning, and progress of these 3 instruments in detail. We also discuss plans for installation of additional facility
instrumentation on the DCT.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The new high precision polarimeter for the “Observatoire du Mont Mégantic” (POMM) is an instrument designed to
observe exoplanets and other targets in the visible and near infrared wavebands. The requirements to achieve these
observation goals are posing unusual challenges to structural and mechanical designers.
In this paper, the detailed design, analysis and laboratory results of the key mechanical structure and sub-systems are
presented.
First, to study extremely low polarization, the birefringence effect due to stresses in the optical elements must be kept to
the lowest possible values. The double-wedge Wollaston custom prism assembly that splits the incoming optical beam is
made of bonded α-BBO to N-BK-7 glass lenses. Because of the large mismatch of coefficients of thermal expansion and
temperatures as low as -40°C that can be encountered at Mont-Mégantic observatory, a finite element analysis (FEA)
model is developed to find the best adhesive system to minimize stresses.
Another critical aspect discussed in details is the implementation of the cascaded rotating elements and the twin rotating
stages. Special attention is given to the drive mechanism and encoding technology. The objective was to reach high
absolute positional accuracy in rotation without any mechanical backlash.
As for many other instruments, mass, size and dimensional stability are important critera for the supporting structure.
For a cantilevered device, such as POMM, a static hexapod is an attractive solution because of the high stiffness to
weight ratio. However, the mechanical analysis revealed that the specific geometry of the dual channel optical layout
also added an off-axis counterbalancing problem. To reach an X-Y displacement error on the detector smaller than 35μm
for 0-45° zenith angle, further structural optimization was done using FEA. An imaging camera was placed at the
detector plane during assembly to measure the actual optical beam shift under varying gravitational loading.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The focal plane of the PAU camera is composed of eighteen 2K x 4K CCDs. These devices, plus four spares, were
provided by the Japanese company Hamamatsu Photonics K.K. with type no. S10892–04(X). These detectors are 200
μm thick fully depleted and back illuminated with an n-type silicon base. They have been built with a specific coating to
be sensitive in the range from 300 to 1,100 nm. Their square pixel size is 15 μm.
The read-out system consists of a Monsoon controller (NOAO) and the panVIEW software package. The deafualt CCD
read-out speed is 133 kpixel/s. This is the value used in the calibration process.
Before installing these devices in the camera focal plane, they were characterized using the facilities of the ICE (CSIC–
IEEC) and IFAE in the UAB Campus in Bellaterra (Barcelona, Catalonia, Spain).
The basic tests performed for all CCDs were to obtain the photon transfer curve (PTC), the charge transfer efficiency
(CTE) using X-rays and the EPER method, linearity, read-out noise, dark current, persistence, cosmetics and quantum
efficiency.
The X-rays images were also used for the analysis of the charge diffusion for different substrate voltages (VSUB).
Regarding the cosmetics, and in addition to white and dark pixels, some patterns were also found. The first one, which
appears in all devices, is the presence of half circles in the external edges. The origin of this pattern can be related to the
assembly process. A second one appears in the dark images, and shows bright arcs connecting corners along the vertical
axis of the CCD. This feature appears in all CCDs exactly in the same position so our guess is that the pattern is due to
electrical fields.
Finally, and just in two devices, there is a spot with wavelength dependence whose origin could be the result of a
defectous coating process.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The Physics of Accelerating Universe Camera (PAUCam) is a new camera for dark energy studies that will be installed
in the William Herschel telescope. The main characteristic of the camera is the capacity for high precision photometric
redshift measurement. The camera is composed of eighteen Hamamatsu Photonics CCDs providing a wide field of view
covering a diameter of one degree. Unlike the common five optical filters of other similar surveys, PAUCam has forty
optical narrow band filters which will provide higher resolution in photometric redshifts. In this paper a general
description of the electronics of the camera and its status is presented.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.