PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.
This PDF file contains the front matter associated with SPIE Proceedings Volume 9438, including the Title Page, Copyright information, Table of Contents, Authors, Introduction (if any), and Conference Committee listing.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
In this paper an algorithm for acoustic emission source localization in cylindrical shell structures is presented. The proposed algorithm is based on the propagation of uncertainty through the Unscented Transform. Time of arrival of desired wave modes and wave velocity are measured parameters, whose uncertainties are processed through the algorithm, which provides mean and covariance statistics for the predicted location. Results of the algorithm using the Unscented Transform are compared to a Monte Carlo simulation, and this is accomplished through the Kullback-Leibler divergence. The results support a strong correlation between the two, however, the Unscented Transform demonstrates superior computational speed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
An enhanced signal processing method based on the filtered Hilbert envelope of the auto-correlation function of the
wave signal has been developed to monitor the height of condensed water through the steel wall of steam pipes with
dynamic surface conditions. The developed signal processing algorithm can also be used to estimate the thickness of the
pipe to determine the cut-off frequency for the low pass filter frequency of the Hilbert Envelope. Testing and analysis
results by using the developed technique for dynamic surface conditions are presented. A multiple array of transducers
setup and methodology are proposed for both the pulse-echo and pitch-catch signals to monitor the fluctuation of the
water height due to disturbance, water flow, and other anomaly conditions.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The newly-developed StifPipe® is an effective technology for repair and strengthening of existing pipes and culverts. The wall of this pipe consists of a lightweight honeycomb core with carbon or glass fiber reinforced polymer (FRP) applied to the skin. The presence of the hollow honeycomb introduces challenges in the nondestructive testing (NDT) of this pipe. In this study, it is investigated if guided waves, excited by PZT (Lead ZirconateTitanate) transducer can detect
damages in the honeycomb layer of the StifPipe®. Multiple signal processing techniques are used for in-depth study and understanding of the recorded signals. The experimental technique for damage detection in StifPipe® material is described and the obtained results are presented in this paper.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Fatigue damage can develop in aerospace structures at locations of stress concentration, such as fasteners. For the safe
operation of the aircraft fatigue cracks need to be detected before reaching a critical length. Guided ultrasonic waves
offer an efficient method for the detection and characterization of such defects in large aerospace structures. Noncontact
excitation of guided waves was achieved using electromagnetic acoustic transducers (EMAT). The transducer
development for the specific excitation of the A0 Lamb wave mode is explained. The radial and angular dependency of
the excited guided wave pulses at different frequencies were measured using a noncontact laser interferometer. Based on
the induced eddy currents in the plate a theoretical model was developed and reasonably good agreement with the
measured transducer performance was achieved. The developed transducers were employed for defect detection in
aluminum components using fully noncontact guided wave measurements. Excitation of the A0 Lamb wave mode was
achieved using the developed EMAT transducer and the guided wave propagation and scattering was measured using a
noncontact laser interferometer. These results provide the basis for the defect characterization in aerospace structures
using noncontact guided wave sensors.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
In this paper, the fundamentals of guided waves in honeycomb sandwich structures are investigated through
wavefield and wavenumber analyses. The guided wavefields are obtained through finite element modeling (FEM) as
well as laser vibrometry experiments. The FEM and laser vibrometry results agree well with each other. At low
frequencies, the guided wavefields show global guided waves which propagate in the entire sandwich with elliptical
wave fronts. With the increase of wave frequency, the global guided waves gradually disappear. At high frequencies,
guided waves propagate in the single skin plate instead of the entire sandwich, and strong wave interactions with the
honeycomb core are observed. To further investigate the wave propagation fundamentals in the honeycomb sandwich,
the guided wavefields are transformed to the wavenumber spectra by using three-dimensional Fourier transform. In the
wavenumber domain, the wavenumber spectra unveil the wavenumber information of the wavefields. At the low
frequencies, the wavenumber spectra of honeycomb sandwich are elliptical ring-shaped. With the increase of frequency,
the elliptical ring-shaped wavenumber band is gradually asymptotic to a circular ring. Moreover, with the increase of
frequency, the wavenumber values of the honeycomb sandwich are gradually getting closer to the wavenumbers of A0
mode in a single skin plate.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
A noncontact laser ultrasonic method is provided for nondestructive characterization of bonding layer (BL) in thermal barrier coating (TBC). A physical mode of thin multi-layered structure is established for the case of received ultrasonic waveform consisting of reverberant overlapping echoes. Then, the transmission coefficient of the mode was derived in this work. Experiments have been performed on TBC specimens using the proposed method. The specimens are produced by electronic beam physical vapor deposition (EBPVD) method. A pulsed laser with width of 10 ns was used to generate ultrasonic while a two wave mixing (TWM) interferometer was employed to receive the ultrasonic signals. Wavelet soft-threshold method (WSTM) was introduce to improve the signal to noise ratio of laser ultrasonic testing TBC. The transmission coefficient spectrum of TBC was obtained to measure the longitudinal velocity of BL. Further, the numerical fitting method is used to determine the attenuation of BL. The proposed method is used to evaluate TBC after 1, 10 and 100 times, and the experimental results are in according with the SEM observations. This method is able to nondestructively characterize BL in TBC system, and is important to practical engineering application.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Nonlinear guided waves have been studied extensively for the characterization of micro-damage in plate-like structures, such as early-stage fatigue and thermal degradation in metals. Meanwhile, an increasing number of studies have reported the use of nonlinear acoustic techniques for detection of impact damage, fatigue, and thermal fatigue in composite structures. Among these techniques, the (relative) acoustic nonlinearity parameter, extracted from acousto-ultrasonic waves based on second-harmonic generation, has been considered one of the most popular tools for quantifying the detection of nonlinearity in inspected structures. Considering the complex nature of nonlinearities involved in composite materials (even under healthy conditions), and operational/environmental variability and measurement noise, the calculation of the relative acoustic nonlinearity parameter (RANP) from experimental data may suffer from considerable uncertainties, which may impair the quality of damage detection. In this study, we aim to quantify the uncertainty of the magnitude of the RANP estimator in the context of impact damage identification in unidirectional carbon fiber laminates. First, the principles of nonlinear ultrasonics are revisited briefly. A general probability density function of the RANP is then obtained through numerical evaluation in a theoretical setting. Using piezoelectric wavers, continuous sine waves are generated in the sample. Steady-state responses are acquired and processed to produce histograms of the RANP estimates before and after the impact damage. These observed histograms are consistent with the predicted distributions, and examination of the distributions demonstrates the significance of uncertainty quantification when using the RANP for damage detection in composite structures.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Fatigue crack and its precursor often serves as a nonlinear source, and the nonlinear ultrasonic features created by a fatigue crack have a much higher sensitivity compared with linear features. This paper presents a fatigue crack visualization technique based on noncontact laser ultrasonics and state space techniques. Under a broadband laser pulse excitation, defect nonlinearity exhibits modulation at multiple frequency peaks in a spectral plot due to interactions among various input frequency components of the broadband input. These modulations are weak and hardly discernable in both the frequency and time domains. In order to detect the nonlinear changes caused by fatigue cracks in the time domain, a state space attractor is reconstructed using a single laser pulse response and its geometrical deviations from the baseline data obtained from the pristine condition of a target structure are computed. Through scanning tests using a Q-switched Nd:YAG laser and laser Doppler vibrometer (LDV), the proposed method can be used for visualizing fatigue cracks in metallic plates.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The paper presents a novel damage detection method that combines Lamb wave propagation with nonlinear acoustics.
Low-frequency excitation is used to modulate Lamb waves in the presence of fatigue cracks. The work presented shows
that the synchronization of the interrogating high-frequency Lamb wave with the low-frequency vibration is a key
element of the proposed method. The main advantages of the proposed method are the lack of necessity for baseline
measurements representing undamaged condition and lack of sensitivity to temperature variations. Numerical
simulations and experimental measurements are performed to demonstrate the application of the proposed method to
detect fatigue crack in aluminum beam.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Carbonation is an important deleterious process for concrete structures. Carbonation begins when carbon dioxide (CO2) present in the atmosphere reacts with portlandite producing calcium carbonate (CaCO3). In severe carbonation conditions, C-S-H gel is decomposed into silica gel (SiO2.nH2O) and CaCO3. As a result, concrete pore water pH decreases (usually below 10) and eventually steel reinforcing bars become unprotected from corrosion agents. Usually, the carbonation of the cementing matrix reduces the porosity, because CaCO3 crystals (calcite and vaterite) occupy more volume than portlandite. In this study, an accelerated carbonation-ageing process is conducted on Portland cement mortar samples with water to cement ratio of 0.5. The evolution of the carbonation process on mortar is monitored at different levels of ageing until the mortar is almost fully carbonated. A nondestructive technique based on nonlinear acoustic resonance is used to monitor the variation of the constitutive properties upon carbonation. At selected levels of ageing, the compressive strength is obtained. From fractured surfaces the depth of carbonation is determined with phenolphthalein solution. An image analysis of the fractured surfaces is used to quantify the depth of carbonation. The results from resonant acoustic tests revealed a progressive increase of stiffness and a decrease of material nonlinearity.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The paper deals with the nonlinear vibro-acoustic modulation technique (VAM) used for nondestructive damage
detection in composites. In its original form the technique allows only for the determination of the presence of damage in
a structure. This paper presents an enhancement of the technique that allows also for the determination of damage
location. Experimental testing of the proposed procedure is performed on carbon fiber/epoxy laminated composite plates
with barely visible impact damage that was generated in an impact test. Shearography was used to verify damage
location. Piezoceramic actuators are used for vibration excitation and a scanning laser vibrometer is used for data
acquisition.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
In this paper, finite element model of a shaft-disk system is developed to investigate the nonlinear breathing behavior of transverse cracks in terms of crack location and rotation speed. The crack model is built using the released strain energy concept in fracture mechanics. Zero Stress Intensity Factor (SIF) method is employed to determine the crack closure line at each time step by calculating the stress intensity factor of opening mode for prescribed resolutions in crack area. The stiffness matrix is updated every time step by integrating compliant coefficients over instantly calculated crack open area. With the finite element model of rotor system, the breathing behavior of cracks is explored as a function of eccentricity phase under different rotation speeds. The coupling of lateral, longitudinal and torsional vibration is studied in time and frequency domain, which may indicate the existence of damage.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
In this present study, damage in a structure has been modeled as a switching/breathing crack which undergoes successive
opening and closing when subjected to tensile and compressive loading respectively. To analyze this effect the structure
has been conceived as a piecewise linear SDOF dynamical system. The governing equation of motion involving the
bilinear stiffness of the system has been solved by discrete wavelet transformation (DWT) method. Daubechies
compactly supported wavelets have been implemented to formulate the nonlinear phenomena to describe the super/sub
harmonics observed in the frequency domain response of the structure when subjected to a harmonic excitation. The
computationally efficient proposed formulation involves an iterative scheme which switches between time and
transformed domain and is then validated by the results of time integration method of solution.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
There are many structures serving vital infrastructure, energy, and national security purposes. Inspecting the
components and areas of the structure most prone to failure during maintenance operations by using non-
destructive evaluation methods has been essential in avoiding costly, but preventable, catastrophic failures. In
many cases, the inspections are performed by introducing acoustic, ultrasonic, or even thermographic waves
into the structure and then evaluating the response. Sometimes the structure, or a component, is not accessible
for active inspection methods. Because of this, there is a growing interest to use passive methods, such as using
ambient noise, or sources of opportunity, to produce a passive impulse response function similar to the active
approach. Several matched field processing techniques most notably used in oceanography and seismology
applications are examined in more detail. While sparse array imaging in structures has been studied for years,
all methods studied previously have used an active interrogation approach. Here, structural damage detection
is studied by use of the reconstructed impulse response functions in ambient noise within sparse array imaging
techniques, such as matched-field processing. This has been studied in experiments on a 9-m wind turbine
blade.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Guided Waves for Composite Monitoring: Modeling Aspects
This paper presents a hybrid modeling technique for the efficient simulation of guided wave propagation and interaction with damage in composite structures. This hybrid approach uses a local finite element model (FEM) to compute the excitability of guided waves generated by piezoelectric transducers, while the global domain wave propagation, wave-damage interaction, and boundary reflections are modeled with the local interaction simulation approach (LISA).
A small-size multi-physics FEM with non-reflective boundaries (NRB) was built to obtain the excitability information of guided waves generated by the transmitter. Frequency-domain harmonic analysis was carried out to obtain the solution for all the frequencies of interest. Fourier and inverse Fourier transform and frequency domain convolution techniques are used to obtain the time domain 3-D displacement field underneath the transmitter under an arbitrary excitation. This 3-D displacement field is then fed into the highly efficient time domain LISA simulation module to compute guided wave propagation, interaction with damage, and reflections at structural boundaries. The damping effect of composite materials was considered in the modified LISA formulation. The grids for complex structures were generated using commercial FEM preprocessors and converted to LISA connectivity format. Parallelization of the global LISA solution was achieved through Compute Unified Design Architecture (CUDA) running on Graphical Processing Unit (GPU). The multi-physics local FEM can reliably capture the detailed dimensions and local dynamics of the piezoelectric transducers. The global domain LISA can accurately solve the 3-D elastodynamic wave equations in a highly efficient manner. By combining the local FEM with global LISA, the efficient and accurate simulation of guided wave structural health monitoring procedure is achieved. Two numerical case studies are presented: (1) wave propagation in a unidirectional CFRP composite plate; (2) wave propagation in a stiffened cross-ply CFRP plate with delamination.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
In Structural Health Monitoring (SHM), classical imaging techniques rely on the use of analytical formulations to predict the propagation and interaction of guided waves generated using piezoceramic (PZT) transducers. For the implementation of advanced imaging approaches on composites structures, analytical formulations need to consider (1) the dependency of phase velocity and damping as a function of angle (2) the steering effect on guided wave propagation caused by the anisotropy of the structure and (3) the full transducer dynamics. In this paper, the analytical modeling of guided waves generation by a circular PZT and propagation on composite structures is investigated. This work, based on previous work from the authors, is intended to extend a semi- analytical formulation from isotropic to transversely isotropic plate-like structures. The formulation considers the dependency of the interfacial shear stress under the PZT as a function of radius, angular frequency and orientation on the composite structure. Validation is conducted for a unidirectional transversely isotropic structure with a bonded circular PZT of 10 mm in diameter. Amplitude curves and time domain signals of the A0 and S0 modes obtained from the proposed formulation and the classical pin-force model are first compared to Finite Element Model simulations. Experimental validation is then conducted using a 3D laser Doppler vibrometer for a non- principal direction on the composite. The results show the interest of considering a semi-analytical formulation for which the transducer dynamics where the shear stress distribution under the transducer is considered in order to reproduce more precisely the generation of guided waves on composite structures.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
In composite structures, damages are often invisible from the surface and can grow to reach a critical size, potentially causing catastrophic failure of the entire structure. Thus safe operation of these structures requires careful monitoring of the initiation and growth of such defects. Ultrasonic methods using guided waves offer a reliable and cost-effective method for structural health monitoring in advanced structures. Guided waves allow for long monitoring ranges and are very sensitive to defects within their propagation path. In this work, the relevant properties of guided Lamb waves for damage detection in composite structures are investigated. An efficient numerical approach is used to determine their dispersion characteristics, and these results are compared to those from laboratory experiments. The experiments are based on a pitch-catch method, in which a pair of movable transducers is placed on one surface of the structure to induce and detect guided Lamb waves. The specific cases considered include an aluminum plate and an aluminum honeycomb sandwich panel with woven composite face sheets. In addition, a disbond of the interface between one of the face sheets and the honeycomb core of the sandwich panel is also considered, and the dispersion characteristics of the two resultant waveguides are determined. Good agreement between numerical and experimental dispersion results is found, and suggestions on the applicability of the pitch-catch system for structural health monitoring are made.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Maintenance approaches based on sensorised structures and Structural Health Monitoring systems could represent one of the most promising innovations in the fields of aerostructures since many years, mostly when composites materials (fibers reinforced resins) are considered. Layered materials still suffer today of drastic reductions of maximum allowable stress values during the design phase as well as of costly and recurrent inspections during the life cycle phase that don't permit of completely exploit their structural and economic potentialities in today aircrafts. Those penalizing measures are necessary mainly to consider the presence of undetected hidden flaws within the layered sequence (delaminations) or in bonded areas (partial disbonding); in order to relax design and maintenance constraints a system based on sensors permanently installed on the structure to detect and locate eventual flaws can be considered (SHM system) once its effectiveness and reliability will be statistically demonstrated via a rigorous Probability Of Detection function definition and evaluation. This paper presents an experimental approach with a statistical procedure for the evaluation of detection threshold of a guided waves based SHM system oriented to delaminations detection on a typical wing composite layered panel. The experimental tests are mostly oriented to characterize the statistical distribution of measurements and damage metrics as well as to characterize the system detection capability using this approach. Numerically it is not possible to substitute part of the experimental tests aimed at POD where the noise in the system response is crucial. Results of experiments are presented in the paper and analyzed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Guided Waves for Composite Monitoring: Experimental Investigation
Use of carbon fiber reinforced polymers (CFRPs) presents challenges because of their complex manufacturing processes and different damage mechanics in relation to legacy metal materials. New monitoring methods for manufacturing, quality verification, damage estimation, and prognosis are needed to use CFRPs safely and efficiently. This work evaluates the development of intelligent composite materials using integrated piezoelectric sensors to monitor the material during cure and throughout service life. These sensors are used to propagate ultrasonic waves through the structure for health monitoring. During manufacturing, data is collected at different stages during the cure cycle, detecting the changing material properties during cure and verifying quality and degree of cure. The same sensors can then be used with previously developed techniques to perform damage detection, such as impact detection and matrix crack density estimation. Real-time damage estimation can be combined with prognostic models to predict future propagation of damage in the material. In this work experimental results will be presented from composite coupons with embedded piezoelectric sensors. Cure monitoring and damage detection results derived from analysis of the ultrasonic sensor signal will be shown. Sensitive signal parameters to the different stimuli in both the time and frequency domains will be explored for this analysis. From these results, use of the same sensor networks from manufacturing throughout the life of the composite material will demonstrate the full life-cycle monitoring capability of these intelligent materials.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The paper deals with the problem of Lamb waves dispersion curves sensitivity to the change of elastic constants
in composite materials. The framework of the present work is a more general problem of material constants
identification in thin plates made of composite materials. The approach is based on the analysis of guided waves
propagation and the related dispersion curves to find the underlying material elastic constants. In present work a
numerical study is performed to identify measurement directions and wave propagation modes that are most sensitive to
the change of the particular elastic constants. This approach will allow to optimize the material constants identification
procedure and experimental setup by specifying the preferred measurement directions and wave propagation modes. The
approach can be used within the Structural Health Monitoring framework to monitor material degradation of plate-like
structures made of composite materials.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Composite materials are susceptible to hidden defects that may occur during manufacturing and service (e.g., foreign object impact) and may grow to a critical size, jeopardizing the integrity of the structure. Among the various existing techniques, guided wave methods provide a good compromise in terms of sensitivity to a variety of damage types or defects and extent of the area that can be monitored, given the ability of these waves to travel relatively long distances within the structure under investigation. Wave propagation in composite structures presents several complexities for effective damage identification. The material inhomogeneity, the anisotropy and the multi-layered construction lead to the significant dependence of wave modes on laminate layup configurations, direction of propagation, frequency, and interface conditions. This paper is concerned with the detection and characterization of small emerging or existing defects in composite structural components using a recently developed technique employing an array of surface mounted broadband ultrasonic transducers as actuators and sensors as well as theoretical analysis to interpret the recorded signals. The technique is applied to panels with different thicknesses, including stiffened specimens with stringer-panel disbonding. The major objectives of this research is to extend the current capabilities of ultrasonic methods to wider areas of coverage, faster inspection procedures, lower percentage of false positives and less dependence of manual operations. The method is based on the well known fact that guided waves are strongly influenced by inter-ply delaminations and other hidden defects in their propagation path.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Many studies have been published in recent years on Lamb wave propagation in isotropic and (multi-layered) anisotropic structures. In this paper, adiabatic wave propagation phenomenon in a tapered composite panel made out of glass fiber reinforced polymers (GFRP) will be considered. Such structural elements are often used e.g. in wind turbine blades and aerospace structures. Here, the wave velocity of each wave mode does not only change with frequency and the direction of wave propagation. It further changes locally due to the varying cross-section of the GFRP panel.
Elastic waves were excited using a piezoelectric transducer. Full wave-field measurements using scanning Laser Doppler vibrometry have been performed. This approach allows the detailed analysis of elastic wave propagation in composite specimen with linearly changing thickness. It will be demonstrated here experimentally, that the wave velocity changes significantly due to the tapered geometry of the structure. Hence, this work motivates the theoretical and experimental analysis of adiabatic mode propagation for the purpose of Non-Destructive Testing and Structural Health Monitoring.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The need for micro-mechanics based understanding leading to meso-scale models for understanding relation between microstructure and ultrasonic higher harmonic generation is emphasized. Three important aspects of material behavior, namely tension-compression asymmetry, shear-normal coupling and deformation induced anisotropy that are relevant to ultrasonic higher harmonic generation are identified. Of these, the role of tension-compression asymmetry in micro-scale material behavior on ultrasonic higher harmonic generation is investigated in detail. It is found that the tension-compression asymmetry is directly related to ultrasonic even harmonic generation and an energy based measure is defined to quantify the asymmetry. Using this energy based measure, a homogenization based approach is employed to quantify the acoustic nonlinearity in material with micro-voids and the findings are discussed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
In this work, we present a systematic method to design layered periodic composites (PCs) for a prescribed elastodynamic response. Our focus is on optimization problems with equality and/or inequality constraints. Constrained optimization problems are reduced to unconstrained problems, and a genetic algorithm is used to find the optimal design. Symmetric 3-phase layered PCs are considered and the thickness of each phase is chosen as a design parameter. Three cases are presented for illustration purposes: (1) the design of an acoustic filter for maximum bandwidth, (2) the design of an acoustic filter for maximum attenuation, and (3) the design of a PC for maximum attenuation and minimum reflection of acoustic waves.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The emergence of artificially designed sub-wavelength acoustic materials, denoted acoustic metamaterials (AMM), has significantly broadened the range of materials responses found in nature. These engineered materials can indeed manipulate sound/vibration in surprising ways, which include vibration/sound insulation, focusing, cloaking, acoustic energy harvesting …. In this work, we report both on the analysis of the airborne sound transmission loss (STL) through a thin metamaterial plate and on the possibility of acoustic energy harvesting. We first provide a theoretical study of the airborne STL and confronted them to the structure-borne dispersion of a metamaterial plate. Second, we propose to investigate the acoustic energy harvesting capability of the plate-type AMM.
We have developed semi-analytical and numerical methods to investigate the STL performances of a plate-type AMM with an airborne sound excitation having different incident angles. The AMM is made of silicone rubber stubs squarely arranged in a thin aluminum plate, and the STL is calculated at low-frequency range [100Hz to 3kHz] for an incoming incident sound pressure wave. The obtained analytical and numerical STL present a very good agreement confirming the reliability of developed approaches. A comparison between computed STL and the band structure of the considered AMM shows an excellent agreement and gives a physical understanding of the observed behavior. On another hand, the acoustic energy confinement in AMM with created defects with suitable geometry was investigated. The first results give a general view for assessing the acoustic energy harvesting performances making use of AMM.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
This paper presents the modeling technique, working mechanism and design guidelines for acoustic multi-stopband metamaterial plates for broadband elastic wave absorption and vibration suppression. The metamaterial plate is designed by integrating two-DOF (degree of freedom) mass-spring subsystems with an isotropic plate to act as vibration absorbers. For an infinite metamaterial plate without damping, a unit cell is modeled using the extended Hamilton’s principle, and two stopbands are obtained by dispersion analysis on the averaged three-DOF model. For a finite metamaterial plate with boundary conditions and damping, shear-deformable conforming plate elements are used to model the whole plate, and stopbands and their dynamic effects are investigated by frequency response analysis and transient analysis by direct numerical integration. Influences of absorbers’ resonant frequencies and damping ratios, plate’s boundary conditions and dimensions, and working plate-absorber modes are thoroughly investigated. Results show that the metamaterial plate is essentially based on the concept of conventional vibration absorbers. The local resonance of the two-DOF subsystems generates two stopbands, and the inertial forces generated by the resonant vibrations of absorbers straighten the plate and attenuate/stop wave propagation. Each stopband’s bandwidth can be increased by increasing the absorber mass and/or reducing the isotropic plate’s unit cell mass. Moreover, a high damping ratio for the secondary absorber can combine the two stopbands into one wide stopband for vibration suppression, and a low damping ratio for the primary absorber warrants absorbers’ quick response to steady and/or transient excitations.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Phononic crystals (PCs) are periodic media known for their spectral and spatial wave manipulation capabilities, among which we recall their stop-band filtering behavior, due to the formation of phononic bandgaps, and the spatial directivity, i.e., the inherent ability to produce directional wave patterns. In general, the anisotropic wave propagation patterns of PCs are characterized by multiple equipotent directions of wave beaming, a characteristic which prevents the effective de-energization of arbitrarily selected regions of the PC domain. In this work we discuss a few enhancements of the directivity of lattice-like PCs, obtained through the introduction of shunted piezoelectric inclusions. The lattice links of each unit cell are instrumented with piezoelectric patches, each connected to a separate negative capacitance circuit. By properly choosing the shunting parameters for selected subsets of patches, we can generate peculiar anisotropic stiffness landscapes and reconfigure the elastic wave patterns accordingly.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The field rotator is a fascinating device capable to rotate the wave front by a certain angle, which can be regarded as a special kind of illusion. We have theoretically designed and experimentally realized an acoustic field rotator by exploiting acoustic metamaterials with extremely anisotropic parameters. A nearly perfect agreement is observed between the numerical simulation and experimental results. We have also studied the acoustic property of the acoustic rotator, and investigated how various structural parameters affect the performances of such devices, including the operating frequency range and rotation angle, which are of particularly significance for the application. The inspection of the operating frequency range shows the device can work within a considerably broad band as long as the effective medium approximation is valid. The influence of the configuration of the metamaterial unit has also been investigated, illustrating the increase of anisotropy of metamaterial helps to enhance the rotator effect, which can be conveniently attained by elongating each rectangle inserted to the units. Furthermore, we have analyzed the underlying physics to gain a deep insight to the rotation mechanism, and discussed the application of such devices for non-plane wave and the potential of extending the scheme to three-dimensional cases. The realization of acoustic field rotator has opened up a new avenue for the versatile manipulations on acoustic waves and our findings are of significance to their design and characterization, which may pave the way for the practical application of such devices.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The buckling induced surface instability is employed to propose a tunable phononic crystal slab composed of a stiff
thin film bonded on a soft elastomer. Wrinkles formation is used to generate one-dimensional periodic scatterers at
the surface of a finitely thick slab. Wrinkles’ pattern change and corresponding stress is employed to control wave
propagation triggered by a compressive strain. Simulation results show that the periodic wrinkly structure can be
used as a transformative phononic crystal which can switch band diagram of the structure in a reversible behavior.
Results of this study provide opportunities for the smart design of tunable switch and elastic wave filters at
ultrasonic and hypersonic frequency ranges.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Flat panel imagers based on amorphous silicon technology (a-Si) for digital radiography are accepted by the medical
and industrial community as having several advantages over radiographic film-based systems. Use of Mega-voltage
x-rays with these flat panel systems is applicable to both portal imaging for radiotherapy and for nondestructive
testing (NDT) and security applications. In the medical field, one potential application that has not been greatly
explored is to radiotherapy treatment planning. Currently, such conventional computed tomographic (CT) data
acquired at kV energies is used to help delineate tumor targets and normal structures that are to be spared during
treatment. CT number accuracy is crucial for radiotherapy dose calculations. Conventional CT scanners operating at
kV X-ray energies typically exhibit significant image reconstruction artifacts in the presence of metal implants in
human body. Using the X-ray treatment beams, having energies typically ≥6MV, to acquire the CT data may not be
practical if it is desired to maintain contrast sensitivity at a sufficiently low dose. Nondestructive testing imaging
systems can expand their application space with the development of the higher energy accelerator for use in
pipeline, and casting inspection as well as certain cargo screening applications that require more penetration. A new
prototype x-band BCL designed to operate up to 1.75 MV has been designed built and tested. The BCL was tested
with a prototype portal imager and medical phantoms to determine artifact reductions and a PaxScan 2530HE
industrial imager to demonstrate resolution is maintained and penetration is improved.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
A pulse-echo ultrasonic guided wave approach capable of monitoring the viscosity of asphalt binders as function of temperature is presented. The method consists of sending a torsional wave from one end of a cylindrical steel rod embedded in asphalt binder and receiving the reflected signals. Experiments were performed on several binders of different performance grades, at temperatures ranging from 25 to 1800C. First, the viscosity of the binders was measured using a rotational viscometer in accordance with ASTM standards. The change in signal strength of the end-of-waveguide reflection of the guided wave was also monitored for the same binders over the same range of temperatures. It was observed that the values obtained using the guided wave approach correlates well with the viscosity values obtained using the rotational viscometer. The method also appears capable of monitoring changes in viscosity due to aging of the binders. The method has the advantage of having no moving parts, which makes it attractive for the development of a system that is capable of monitoring viscosity in asphalt binders in the asphalt industry. Industrial applications examples are briefly summarized.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
This paper proposes a vibration-based damage detection method designed for structural elements subjected to important vertical loads, as columns or pillars. The method is based on the relation existing between the energy stored in the pillar in several vibration modes and the corresponding natural frequencies. For a certain mode, this energy results as the sum of the energies stored in all pillar slices, being dependent on the rigidity and the squared of the corresponding mode shape curvature. This means that the energy distribution along the pillar is different for each mode. Thus, reducing the rigidity of one slice due to damage, the frequencies will decrease in different ways, depending on the slice location. This fact permits to contrive patterns able to characterize the effect of damage at any location along the pillar. Since the mode shapes (and the natural frequencies) are influenced by inertial forces, but in the meantime by the compression and shear forces induced by the top mass, the patterns have to be derived for each load case. The paper presents a simple mathematical expression able to predict frequency changes if damage occurs at any location along the pillar and for any top mass value. Patterns that characterize the damage location are consequently derived by using the squared mode shape curvatures of the healthy beam. The damage location becomes an inverse problem, it being found by interpreting the results of frequency measurements for the healthy and damaged state. The process of damage location is exemplified by numerical simulations.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
In this paper, a vibration-based damage detection method designed for thin plates is proposed. The method bases on the relation existing between the strain energy stored in the plate in several vibration modes and the respective natural frequencies. For any mode, the strain energy results as sum of the energies stored in all plate elements in that mode. It depends on the square of the mode shape curvature achieved in each element location for the given vibration mode. As a result, the energy distribution along the plate is different for each mode. By reducing the rigidity of one plate element due to a damage, the frequencies will drop in a different manner, depending on the damaged element location. This permits to define patterns that characterize the dynamic behavior of the plated for any damage location. Actually, the patterns are derived from the normalized frequency shifts attained by numerical simulations. Herein the patterns that characterize a centrally located damage of different extent are consequently derived by means of the finite element analysis and used as a benchmark in the damage detection process. These patterns are successfully used to recognize, localize and quantify damages from measurements on in real plates.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Civil Structure Monitoring: Building, Bridge, and Tower
This paper presents a novel approach for output-only nonlinear system identification of structures using data recorded
during earthquake events. In this approach, state-of-the-art nonlinear structural FE modeling and analysis techniques are
combined with Bayesian Inference method to estimate (i) time-invariant parameters governing the nonlinear hysteretic
material constitutive models used in the FE model of the structure, and (ii) the time history of the earthquake ground
motion. To validate the performance of the proposed framework, the simulated responses of a bridge pier to an
earthquake ground motion is polluted with artificial output measurement noise and used to jointly estimate the unknown
material parameters and the time history of the earthquake ground motion. This proof-of-concept example illustrates the
successful performance of the proposed approach even in the presence of high measurement noise.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Characterization of dolomitic limestone rock samples with increasing levels of damage is presented using linear and nonlinear ultrasonic approaches. Limestone test samples with increasing levels of damage were created artificially by exposing virgin samples to increasing temperature levels of 100, 200, 300, 400, 500, 600, and 700oC for a ninety minute period of time. The linear characterization is based upon the concept of complex moduli, which is estimated using ultrasonic dilatational and shear phase velocity measurements and corresponding attenuations. The nonlinear approach is based upon non-collinear wave mixing, involving mixing of two dilatational waves. Criteria were used to assure that the detected scattered wave originated via wave interaction in the limestone and not from nonlinearities in the testing equipment. These criteria included frequency and propagating direction of the resultant scattered wave, and the time-of-flight separation between the two primary waves and the resulting scattered wave. It was observed that both the linear and nonlinear approaches are able to characterize the level of damage in limestone rock.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Wind energy is seen as one of the most promising solutions to man’s ever increasing demands of a clean source of energy. In particular to reduce the cost of energy (COE) generated, there are efforts to increase the life-time of the wind turbines, to reduce maintenance costs and to ensure high availability. Maintenance costs may be lowered and the high availability and low repair costs ensured through the use of condition monitoring (CM) and structural health monitoring (SHM). SHM allows early detection of damage and allows maintenance planning. Furthermore, it can allow us to avoid unnecessary downtime, hence increasing the availability of the system. The present work is based on the use of neutral axis (NA) for SHM of the structure. The NA is tracked by data fusion of measured yaw angle and strain through the use of Extended Kalman Filter (EKF). The EKF allows accurate tracking even in the presence of changing ambient conditions. NA is defined as the line or plane in the section of the beam which does not experience any tensile or compressive forces when loaded. The NA is the property of the cross section of the tower and is independent of the applied loads and ambient conditions. Any change in the NA position may be used for detecting and locating the damage. The wind turbine tower has been modelled with FE software ABAQUS and validated on data from load measurements carried out on the 34m high tower of the Nordtank, NTK 500/41 wind turbine.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Towards developing a method capable to assess the efficiency of rejuvenators to restore embrittlement temperatures of
oxidized asphalt binders towards their original, i.e., unaged values, three gyratory compacted specimens were
manufactured with mixtures oven-aged for 36 hours at 135 °C. In addition, one gyratory compacted specimen
manufactured using a short-term oven-aged mixture for two hours at 155 °C was used for control to simulate aging during
plant production. Each of these four gyratory compacted specimens was then cut into two cylindrical specimen 5 cm thick
for a total of six 36-hour oven-aged specimens and two short term aging specimens. Two specimens aged for 36 hours
and the two short-term specimens were then tested using an acoustic emission approach to obtain base acoustic emission
response of short-term and severely-aged specimens. The remaining four specimens oven-aged for 36 hours were then
treated by spreading their top surface with rejuvenator in the amount of 10% of the binder by weight. These four specimens
were then tested using the same acoustic emission approach after two, four, six, and eight weeks of dwell time. It was
observed that the embrittlement temperatures of the short-term aged and severely oven-aged specimens were -25 °C and -
15 °C, respectively. It was also observed that after four weeks of dwell time, the rejuvenator-treated samples had
recuperated the original embrittlement temperatures. In addition, it was also observed that the rejuvenator kept acting
upon the binder after four weeks of dwell time; at eight weeks of dwell time, the specimens had an embrittlement
temperature about one grade cooler than the embrittlement temperature corresponding to the short-term aged specimen.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
In smart structure monitoring, twist angle is one of the most critical mechanical parameters for infrastructure
deterioration. A compact temperature-insensitive optical fiber twist sensor based on multi-phase-shifted helical long
period fiber grating has been proposed and experimentally demonstrated in this paper. A multi-phase-shifted helical long
period fiber grating is fabricated with a multi-period rotation technology. A π / 2 and a 3π / 2 phase shift is introduced
in the helical long period fiber grating by changing the period. The helical pitch can be effectively changed with a
different twist rate, which is measured by calculating the wavelength difference between two phase shift peaks. Although
the wavelength of the phase shift peak also shifts with a change of the temperature, the wavelength difference between
two phase shift peaks is constant due to two fixed phase shifts in the helical long period fiber grating, which is extremely
insensitive to temperature change for the multi-phase-shifted helical long period fiber grating. The experimental results
show that a sensitivity of up to 1.959 nm/(rad/m) is achieved.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
In this paper we present a Graphical Processing Unit (GPU) accelerated variational formulation for fast phononic band-structure calculations. The thousands of parallel threads available on GPUs massively reduce the time taken to assemble the phononic eigenvalue problem for arbitrarily complex unit cells. The computation times then become bounded by the eigenvalue solution and if only a few eigenvalues are desired then the computation becomes linear in complexity. Since most of the current applications of phononic crystals require the calculation of only the first few eigenvalues, the GPU acceleration scheme presented in this paper promises to facilitate the solutions to currently tough phononic problems such as 3-D optimization and inverse solutions. The parallelization scheme and GPU application presented in this paper are not limited to the variational scheme used but can be easily extended to other phononic algorithms such as the Plane Wave Expansion method and also to the general eigenvalue solutions of elastodynamics.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
We have applied a homogenization theory1 , which is based on the Fourier formalism, to calculate the effective parameters of phononic crystals having liquid inclusions embedded in a solid host matrix. The theory provides explicit formulas for determining all the components of the effective mass density and stiffness tensors, which are valid in the long wavelength limit for arbitrary Bravais lattice and any form of the inclusions inside the unit cell. In the previous work1, it was shown that rectangular two-dimensional lattices of water-filled holes in an elastic host matrix exhibit solid-like behavior with strongly anisotropic mass density in the low-frequency limit. Such metamaterials were called metasolids. In the present work, we analyze the metasolid behavior of liquid-solid three-dimensional phononic crystals. In particular we have analyzed the effect of the type of Bravais lattice and form of the liquid inclusions on the anisotropy of the effective mass density. In the analysis we have considered different solid host materials (Al, Si, and ribbon) with isolated inclusions of water. We have established that the anisotropy of the effective mass density is considerably strong when the homogenized phononic crystals do not possess inversion symmetry because of the inclusion shape. Our results could be useful for designing metamaterials with predetermined elastic properties.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Three fundamental variational principles used for solving elastodynamic eigenvalue problems are studied within
the context of elastic wave propagation in periodic composites (phononics). We study the convergence of the
eigenvalue problems resulting from the displacement Rayleigh quotient, the stress Rayleigh quotient and the
mixed quotient. The convergence rates of the three quotients are found to be related to the continuity and
differentiability of the density and compliance variation over the unit cell. In general, the mixed quotient
converges faster than both the displacement Rayleigh and the stress Rayleigh quotients, however, there exist
special cases where either the displacement Rayleigh or the stress Rayleigh quotient shows the exact same
convergence as the mixed-method. We show that all methods converge faster for smoother material property
variations, but when density variation is rough, the difference between the mixed quotient and stress Rayleigh
quotient is higher and similarly, when compliance variation is rough, the difference between the mixed quotient
and displacement Rayleigh quotient is higher. Since eigenvalue problems such as those considered in this paper
tend to be highly computationally intensive, it is expected that these results will lead to fast and efficient
algorithms in the areas of phononics and photonics.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
In recent years electromagnetic Terahertz (THz) radiation or T-ray has been increasingly used for nondestructive evaluation of various materials such as polymer composites and porous foam tiles in which ultrasonic waves cannot penetrate but T-ray can. Most of these investigations have been limited to mechanical damage detection like inclusions, cracks, delaminations etc. So far only a few investigations have been reported on heat induced damage detection. Unlike mechanical damage the heat induced damage does not have a clear interface between the damaged part and the surrounding intact material from which electromagnetic waves can be reflected back. Difficulties associated with the heat induced damage detection in composite materials using T-ray are discussed in detail in this paper. T-ray measurements are compared for different levels of heat exposure of composite specimens.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Varying loading conditions of aircraft structures result in stress concentration at fastener holes, where multi-layered components are connected, potentially leading to the development of hidden fatigue cracks in inaccessible layers. High frequency guided waves propagating along the structure allow for the structural health monitoring (SHM) of such components, e.g., aircraft wings. Experimentally the required guided wave modes can be easily excited using standard ultrasonic wedge transducers. However, the sensitivity for the detection of small, potentially hidden, fatigue cracks has to be ascertained. The type of multi-layered model structure investigated consists of two adhesively bonded aluminum plate-strips with a sealant layer. Fatigue experiments were carried out and the growth of fatigue cracks at the fastener hole in one of the metallic layers was monitored optically during cyclic loading. The influence of the fatigue cracks of increasing size on the scattered guided wave field was evaluated. The sensitivity and repeatability of the high frequency guided wave modes to detect and monitor the fatigue crack growth was investigated, using both standard pulse-echo equipment and a laser interferometer. The potential for hidden fatigue crack growth monitoring at critical and difficult to access fastener locations from a stand-off distance was ascertained. The robustness of the methodology for practical in situ ultrasonic monitoring of fatigue crack growth is discussed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The propagation characteristics of shock waves generated under hypervelocity impact (HVI) (an impact velocity leading to the case that inertial forces outweigh the material strength, usually on the order over 1 km/s) and guided by plate-like structures were interrogated. A hybrid numerical modeling approach, based on the Smoothed-Particle Hydrodynamics (SPH) and Finite Element Method, was developed, to scrutinize HVI scenarios in which a series of aluminum plates, 1.5- mm, 3-mm and 5-mm in thickness, was considered to be impacted by an aluminum sphere, 3.2-mm in diameter, at an initial velocity of 3100 m/s, 3050 m/s and 2490 m/s, respectively. The meshless nature of SPH algorithm circumvented the inefficiency and inaccuracy in simulating large structural distortion associated with HVI when traditional finite element methods used. The particle density was particularly intensified in order to acquire wave components of higher frequencies. With the developed modeling approach, shock waves generated under concerned HVI scenarios were captured at representative gauging points, and the signals were examined in both time and frequency domains. The simulation results resembled those from earlier experiment, demonstrating a capability of the developed modeling approach in canvassing shock waves under HVI. It has been concluded that in the regions near the impact point, the shock waves propagate with higher velocities than bulk waves; as propagation distance increases, the waves slow down and can be described as fundamental and higher-order symmetric and anti-symmetric plate-guided wave modes, propagating at distinct velocities in different frequency bands. The results will facilitate detection of orbital debris-induced damage in space vehicles.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Temperature variations affect Lamb wave propagation and therefore in this way they can severely limit application of baseline signals in SHM systems. Various techniques are proposed in the paper to solve this problem. New method based on an interpretation of multiple signals acquired in distinct points of the structure is introduced and compared with other widely used approaches. Data fusion is used to merge a number of methods into one with a substantially increased efficiency.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Acoustic Emission phenomenon is of great importance for analyzing and monitoring health status of critical structural components. In acoustic emission, elastic waves generated by sources propagate through the structure and are acquired by networks of sensors. Ability to accurately locate the event strongly depends on the type of medium (e.g. geometrical features) and material properties, that result in wave signals distortion. These effects manifest themselves particularly in plate structures due to intrinsic dispersive nature of Lamb waves. In this paper two techniques for acoustic emission source localization in elastic plates are compared: one based on a time-domain distance transform and the second one is a two-step hybrid technique. A time-distance domain transform approach, transforms the time-domain waveforms into the distance domain by using wavenumber-frequency mapping. The transform reconstructs the source signal removing distortions resulting from dispersion effects. The method requires input of approximate material properties and geometrical features of the structure that are relatively easy to estimate prior to measurement. Hence, the method is of high practical interest. Subsequently, a two-step hybrid technique, which does not require apriori knowledge of material parameters, is employed. The method requires a setup of two predefined clusters of three sensors in each. The Lamb wave source is localized from the intersection point of the predicted wave propagation directions for the two clusters. The second step of the two-step hybrid technique improves the prediction by minimizing an objective function. The two methods are compared for analytic, simulated and experimental signals.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The last few decades have seen a significant increase in research interest related to nonlinearities in micro-cracked and cracked solids. As a result, a number of different nonlinear acoustic methods have been developed for damage detection. The paper investigates nonlinear crack-wave interactions used for damage detection in plate-like structures. Semi-analytical modelling is used to investigate wave propagation in the vicinity of the crack. The focus is on non-classical crack model leading to wave modulations. Various physical phenomena (including fluctuation of temperature gradient) associated with these modulations are investigated. The work presented can be used for better understanding of nonlinear crack-wave interactions that are used for damage detection in structural health monitoring applications.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Analysis of elastic wave propagation in nonlinear media has gained recent research attention due to the recognition of their
amplitude-dependent behavior. This creates opportunities for increased accuracy of damage detection and localization,
development of new structural monitoring strategies, and design of new structures with desirable acoustic behavior (e.g.,
amplitude-dependent frequency bandgaps, wave beaming, and filtering). This differs from more traditional nonlinear analysis
approaches which target the prediction of higher harmonic growth. Of particular interest in this work is the analysis of
amplitude-dependent shifts in Lamb wave dispersion curves. Typically, dispersion curves are calculated for nominally linear
material parameters and geometrical features of a waveguide, even when the constitutive law is nonlinear. Instead, this
work employs a Lindstedt - Poincare perturbation approach to calculate amplitude-dependent dispersion curves, and shifts
thereof, for nonlinearly-elastic plates. As a result, a set of first order corrections to frequency (or equivalently wavenumber)
are calculated. These corrections yield significant amplitude dependence in the spectral characteristics of the calculated
waves, especially for high frequency waves, which differs fundamentally from linear analyses. Numerical simulations
confirm the analytical shifts predicted. Recognition of this amplitude-dependence in Lamb wave dispersion may suggest,
among other things, that the analysis of guided wave propagation phenomena within a fully nonlinear framework needs to
revisit mode-mode energy flux and higher harmonics generation conditions.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Lamb wave based Structural Health Monitoring (SHM) has received much attention during the past decades for its broad coverage and high sensitivity to damage. Lamb waves can be used to locate and quantify damage in static structures successfully. Nonetheless, structures are usually subjected to various external vibrations or oscillations. Not many studies are reported in the literature concerning the damage detecting ability of Lamb wave in oscillating structures which turns out to be a pivotal issue in the practical application of the SHM technique. For this reason in this study, the propagating capability of Lamb waves in a vibrating thin aluminum plate is examined experimentally. Two circular shaped piezoelectric wafer active transducers are surface-bonded on the aluminum plate where one acted as an actuator and another as a sensor. An arbitrary waveform generator is connected to the actuator for the generation of a windowed tone burst on the aluminum plate. An oscilloscope is connected to the sensor for receiving the traveled waves. An external shaker is used to generate out-of-plane external vibration on the plate structure. Time of flight (TOF) is a crucial parameter in most Lamb wave based SHM studies, which measures wave traveling time from the actuator to sensor. In the present study the influence of the external vibrations on the TOF is investigated. Experiments are performed under different boundary conditions of the plate, such as free-free and fixed by gluing. The effects of external vibrations in the frequency range between 10 Hz to 1000 Hz are analyzed. Comparisons are carried out between the resulting Lamb wave signals from the vibrating plate for different boundary conditions. Experimental results show that the external vibrations in relatively low frequency range do not change the TOF during the application of Lamb wave based SHM.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Piezoelectric elements are a key component of modern non-destructive testing (NDT) and structural health monitoring (SHM) systems and play a significant role in many other areas involving dynamic interaction with the structure such as energy harvesting, active control, power ultrasonics or removal of surface accretions using structural waves. In this paper we present a wave-based technique for modelling waveguides equipped with piezoelectric actuators in which there is no need for common simplifications regarding their dynamic behaviour or mutual interaction with the structure. The proposed approach is based on the semi-analytical finite element (SAFE) method. We developed a new piezoelectric semi-analytical element and employed the analytical wave approach to model the distributed electric excitation and scattering of the waves at discontinuities. The model is successfully validated against an experiment on a beam-like waveguide with emulated anechoic terminations.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Haptics is the field at the interface of human touch (tactile sensation) and classification, whereby tactile feedback is used to train and inform a decision-making process. In structural health monitoring (SHM) applications, haptic devices have been introduced and applied in a simplified laboratory scale scenario, in which nonlinearity, representing the presence of damage, was encoded into a vibratory manual interface. In this paper, the “spirit” of haptics is adopted, but here ultrasonic guided wave scattering information is transformed into audio (rather than tactile) range signals. After sufficient training, the structural damage condition, including occurrence and location, can be identified through the encoded audio waveforms. Different algorithms are employed in this paper to generate the transformed audio signals and the performance of each encoding algorithms is compared, and also compared with standard machine learning classifiers. In the long run, the haptic decision-making is aiming to detect and classify structural damages in a more rigorous environment, and approaching a baseline-free fashion with embedded temperature compensation.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Biomedical Applications: Organ and Implant Monitoring
In this paper, a 2/14 MHz dual-frequency single-element transducer and a 2/22 MHz sub-array (16/48-elements linear array) transducer were developed for contrast enhanced super-harmonic ultrasound imaging of prostate cancer with the low frequency ultrasound transducer as a transmitter for contrast agent (microbubble) excitation and the high frequency transducer as a receiver for detection of nonlinear responses from microbubbles. The 1-3 piezoelectric composite was used as active materials of the single-element transducers due to its low acoustic impedance and high coupling factor. A high dielectric constant PZT ceramic was used for the sub-array transducer due to its high dielectric property induced relatively low electrical impedance. The possible resonance modes of the active elements were estimated using finite element analysis (FEA). The pulse-echo response, peak-negative pressure and bubble response were tested, followed by in vitro contrast imaging tests using a graphite-gelatin tissue-mimicking phantom. The single-element dual frequency transducer (8 × 4 × 2 mm3) showed a -6 dB fractional bandwidth of 56.5% for the transmitter, and 41.8% for the receiver. A 2 MHz-transmitter (730 μm pitch and 6.5 mm elevation aperture) and a 22 MHz-receiver (240 μm pitch and 1.5 mm aperture) of the sub-array transducer exhibited -6 dB fractional bandwidth of 51.0% and 40.2%, respectively. The peak negative pressure at the far field was about -1.3 MPa with 200 Vpp, 1-cycle 2 MHz burst, which is high enough to excite microbubbles for nonlinear responses. The 7th harmonic responses from micro bubbles were successfully detected in the phantom imaging test showing a contrast-to-tissue ratio (CTR) of 16 dB.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
This paper presents a case for extension of structural health monitoring (SHM) technologies to offer solutions for biomedical problems. SHM research has made remarkable progress during the last two/ three decades. These technologies are now being extended for possible applications in the bio-medical field. Especially, smart materials, such as piezoelectric ceramic (PZT) patches and fibre-Bragg grating (FBG) sensors, offer a new set of possibilities to the bio-medical community to augment their conventional set of sensors, tools and equipment. The paper presents some of the recent extensions of SHM, such as condition monitoring of bones, monitoring of dental implant post surgery and foot pressure measurement. Latest developments, such as non-bonded configuration of PZT patches for monitoring bones and possible applications in osteoporosis detection, are also discussed. In essence, there is a whole new gamut of new possibilities for SHM technologies making their foray into the bi-medical sector.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
We study the feasibility and the repeatability of the electromechanical impedance (EMI) method for the health monitoring of lightweight bonded joints. The EMI technique exploits the coupling between the displacement field and the potential field of a piezoelectric material, by attaching or embedding a piezoelectric transducer to the structure to be monitored. The sensor is excited by an external voltage and the electrical admittance which is the ratio between the electric current and the applied voltage is measured as it depends on the mechanical coupling between the transducer and the host structure. Owing to this interaction, the admittance may represent a signature for the health of the host structure. In this study the EMI method is applied to aluminum joints adhesively bonded. We investigate the repeatability of the proposed method by monitoring the same aluminum components bonded many times using the same adhesive mix, and then by monitoring the same two components bonded several times by means of different adhesive qualities. The results demonstrate that the EMI is repeatable and variations in the admittance signatures are related to the quality (health) of the bond.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
A proof of concept of low-profile flow sensor has been designed, fabricated, and subsequently tested to demonstrate its feasibility for monitoring hemodynamic changes in cerebral aneurysm. The prototype sensor contains three layers, i.e., a thin polyurethane layer was sandwiched between two sputter-deposited thin film nitinol layers (6μm thick). A novel superhydrophilic surface treatment was used to create hemocompatible surface of thin nitinol electrode layers. A finite element model was conducted using ANSYS Workbench 15.0 Static Structural to optimize the dimensions of flow sensor. A computational fluid dynamics calculations were performed using ANSYS Workbench Fluent to assess the flow velocity patterns within the aneurysm sac. We built a test platform with a z-axis translation stage and an S-beam load cell to compare the capacitance changes of the sensors with different parameters during deformation. Both LCR meter and oscilloscope were used to measure the capacitance and the resonant frequency shifts, respectively. The experimental compression tests demonstrated the linear relationship between the capacitance and applied compression force and decreasing the length, width and increasing the thickness improved the sensor sensitivity. The experimentally measured resonant frequency dropped from 12.7MHz to 12.48MHz, indicating a 0.22MHz shift with 200g ( 2N) compression force while the theoretical resonant frequency shifted 0.35MHz with 50g ( 0.5N). Our recent results demonstrated a feasibility of the low-profile flow sensor for monitoring haemodynamics in cerebral aneurysm region, as well as the efficacy of the use of the surface treated thin film nitinol for the low-profile sensor materials.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.