PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.
This PDF file contains the front matter associated with SPIE Proceedings Volume 9439, including the Title Page, Copyright information, Table of Contents, Authors, Introduction (if any), and Conference Committee listing.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Advanced manufacturing and new energy systems are presenting a wide variety of challenges for nondestructive testing and evaluation (NDT/NDE). This paper discusses the state of the art, needs and opportunities for NDE to provide reliable, effective and economic inspection and monitoring for energy systems. It introduces issues of materials, defects and allowables, the evolution of advanced NDT and NDE and then considers examples of NDE for energy systems. These include applications in the petrochemical industry, advanced and additive manufacturing, solar cells, wind turbines, nuclear systems and some underlying issues of large scale composites, pipes and concrete.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Phased array ultrasonic testing (PAUT) techniques are widely used for the non-destructive testing (NDT) of austenitic welds to find defects like cracks. However, the propagation of ultrasound waves through the austenitic material is intricate due to its inhomogeneous and anisotropic nature. Such a characteristic leads beam path distorted which causes the signal to be misinterpreted. By employing a reference block which is cutout from the mockup of which the structure is a dissimilar metal weld (DMW), a new method of PAUT named as Referencing Delay Law Technique (RDLT) is introduced. With the RDLT, full matrix capture (FMC) was used for data acquisition. To reconstruct the images, total focusing method (TFM) was used. After the focal laws were calculated, PAUT was then performed. As a result, the flaws are more precisely positioned with significantly increased signal-to-noise ratio (SNR).
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Concrete has been used in the construction of nuclear power plants (NPPs) due to three primary properties: its low cost, structural strength, and ability to shield radiation. Examples of concrete structures important to the safety of Light Water Reactor (LWR) plants include the containment building, spent fuel pool, and cooling towers. Use in these structures has made concrete’s long-term performance crucial for the safe operation of commercial NPPs. Extending LWR operating period to 60 years and beyond will likely increase susceptibility and severity of known forms of degradation. New mechanisms of materials degradation are also possible. This creates the need to be able to nondestructively evaluate the current subsurface concrete condition of aging concrete material in NPP structures. The size and complexity of NPP containment structures and heterogeneity of Portland cement concrete make characterization of the degradation extent a difficult task. Specially designed and fabricated test specimens can provide realistic flaws that are similar to actual flaws in terms of how they interact with a particular nondestructive evaluation (NDE) technique. Artificial test blocks allow the isolation of certain testing problems as well as the variation of certain parameters. Representative large heavily reinforced concrete specimens would allow for comparative testing to evaluate the state-of-the-art NDE in this area and to identify additional developments necessary to address the challenges potentially found in NPPs.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Structural load monitoring of wind turbines is becoming increasingly important due increasing turbine size and offshore
deployment. Rotor blades are key components that can be monitored by continuously measuring their deflection and
thereby determining strain and loads on the blades. In this paper, a method is investigated for monitoring blade
deformation that utilizes micro-electromechanical systems (MEMS) comprising triaxial accelerometers, magnetometers
and gyroscopes. This approach is demonstrated using a cantilever beam instrumented with 5 MEMS and 4 strain gauges.
The measured changes in angles obtained from the MEMS are used to determine a deformation surface which is used as
an input to a finite element model in order to estimate the strain throughout the beam. The results are then verified by
comparison with strain gauge measurements.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The development of large wind turbines that enable to harvest energy more efficiently is a consequence of the increasing
demand for renewables in the world. To optimize the potential energy output, light and flexible wind turbine blades
(WTBs) are designed. However, the higher flexibilities and lower buckling capacities adversely affect the long-term
safety and reliability of WTBs, and thus the increased operation and maintenance costs reduce the expected revenue.
Effective structural health monitoring techniques can help to counteract this by limiting inspection efforts and avoiding
unplanned maintenance actions. Vibration-based methods deserve high attention due to the moderate instrumentation
efforts and the applicability for in-service measurements. The present paper proposes the use of cross-correlations (CCs)
of acceleration responses between sensors at different locations for structural damage detection in WTBs. CCs were in
the past successfully applied for damage detection in numerical and experimental beam structures while utilizing only
single lags between the signals. The present approach uses vectors of CC coefficients for multiple lags between
measurements of two selected sensors taken from multiple possible combinations of sensors. To reduce the
dimensionality of the damage sensitive feature (DSF) vectors, principal component analysis is performed. The optimal
number of principal components (PCs) is chosen with respect to a statistical threshold. Finally, the detection phase uses
the selected PCs of the healthy structure to calculate scores from a current DSF vector, where statistical hypothesis
testing is performed for making a decision about the current structural state. The method is applied to laboratory
experiments conducted on a small WTB with non-destructive damage scenarios.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Damage to wind turbine blades can, if left uncorrected, evolve into catastrophic failures resulting in high costs and
significant losses for the operator. Detection of damage, especially in real time, has the potential to mitigate the losses
associated with such catastrophic failure. To address this need various forms of online monitoring are being investigated,
including acoustic emission detection. In this paper, pencil lead breaks are used as a standard reference source and tests
are performed on unidirectional glass-fiber-reinforced-polymer plates. The mechanical pencil break is used to simulate an
acoustic emission (AE) that generates elastic waves in the plate. Piezoelectric sensors and a data acquisition system are
used to detect and record the signals. The expected dispersion curves generated for Lamb waves in plates are calculated,
and the Gabor wavelet transform is used to provide dispersion curves based on experimental data. AE sources using an
aluminum plate are used as a reference case for the experimental system and data processing validation. The analysis of
the composite material provides information concerning the wave speed, modes, and attenuation of the waveform, which
can be used to estimate maximum AE event – receiver separation, in a particular geometry and materials combination. The
foundational data provided in this paper help to guide improvements in online structural health monitoring of wind turbine
blades using acoustic emission.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Eddy Current Testing has been mainly used to determine defects of conductive materials and wall thicknesses in heavy industries such as construction or aerospace. Recently, high frequency Eddy Current imaging technology was developed. This enables the acquirement of information of different depth level in conductive thin-film structures by realizing proper standard penetration depth. In this paper, we summarize the state of the art applications focusing on PV industry and extend the analysis implementing achievements by applying spatially resolved Eddy Current Testing. The specific state of frequency and complex phase angle rotation demonstrates diverse defects from front to back side of silicon solar cells and characterizes homogeneity of sheet resistance in Transparent Conductive Oxide (TCO) layers. In order to verify technical feasibility, measurement results from the Multi Parameter Eddy Current Scanner, MPECS are compared to the results from Electroluminescence.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The electrical responses of materials and devices subjected to thermal inputs, such as the Seebeck effect and pyroelectricity, are of great interest in thermal-electric energy conversion applications. Of particular interest are phenomena which exploit heterogeneities in the mechanics of heterostructured materials for novel and unexplored mechanisms in thermal-electric conversion. Here we introduce a new and universal mechanism for converting thermal stimuli into electricity via structural heterogeneities, which we term “pyro-paraelectricity.” Specifically, when a paraelectric material is grown on a substrate with a different lattice constant, the paraelectric layer experiences an inhomogeneous strain due to the lattice mismatch, establishing a strain gradient along the axis of the layer thickness. This induced strain gradient can be multiple orders of magnitude higher than strain gradients in bulk materials imparted by mechanical bending (0.1 m-1). Consequently, charge separation is induced in the paraelectric layer via flexoelectricity, leading to a polarization in proportion to the dielectric constant. The dielectric constant, and thus the polarization, changes with temperature. Therefore, when a strained metal-insulator-metal (MIM) heterostructure is subjected to a thermal input, changes in the permittivity generate an electrical response. We demonstrate this mechanism by employing a MIM heterostructure with a high permittivity sputtered barium strontium titanate (BST) film as the insulating layer in a platinum sandwich. The resulting strain gradient of more than 104 m-1, an enhancement of five orders of magnitude due to the structural heterogeneity, was verified by an X-ray diffraction scan. With an applied thermal input, the strained MIM heterostructure generated current which was highly correlated to the thermal input. A theoretical model was found to be consistent with the experimental data. These results demonstrate the existence of “pyro-paraelectricity,” a flexoelectricity-mediated mechanism for thermal-electrical conversion.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The inexpensive sources of fossil fuels in the world are limited, and will deplete soon because of the huge
demand on the energy and growing economies worldwide. Thus, many research activities have been focused on the
non-fossil fuel based energy sources, and this will continue next few decades. Water splitting using photocatalysts is
one of the major alternative energy technologies to produce hydrogen directly from water using photon energy of the
sun. Numerous solid photocatalysts have been used by researchers for water splitting. In the present study, nickel
oxide and strontium titanata were chosen as photocatalysts for water splitting. Poly (vinyl pyrrolidone) (PVP) was
incorporated with nickel oxide [Ni2O3] (co-catalyst), while poly (vinyl acetate) (PVAc) was mixed with titanium
(IV) isopropoxide [C12H28O4Ti] and strontium nitrate [Sr(NO3)2]. Then, two solutions were electrospun using
coaxial electrospinning technique to generate nanoscale fibers incorporated with NiOx nanoparticles. The fibers
were then heat treated at elevated temperatures for 2hr in order to transform the strontium titanata and nickel oxide
into crystalline form for a better photocatalytic efficiency. The morphology of fibers was characterized via scanning
electron microscopy (SEM), while the surface hydrophobicity was determined using water contact angle
goniometer. The UV-vis spectrophotometer was also used to determine the band gap energy values of the
nanofibers. This study may open up new possibilities to convert water into fuel directly using the novel
photocatalysts.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Increasing demand for energy storage devices has propelled researchers for developing efficient super-capacitors (SC) with long cycle life and ultrahigh energy density. Carbon-based materials are commonly used as electrode materials for SC. Herein we report a new approach to improve the SC performance utilizing porous carbon /Cerium oxide nanoparticle (PC-CON) hybrid as electrode material synthesized via low temperature hydrothermal method and tetraethyl ammonium tetrafluroborate in acetonitrile as organic electrolyte. Through this approach, charges can be stored not only via electrochemical double layer capacitance (EDLC) from PC but also through pseudo-capacitive effect from CeO2 NPs. The excellent electrode-electrolyte interaction due to the electrochemical properties of the ionic electrolyte provides a better voltage window for the SC. Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and X-Ray Diffraction (XRD) measurements were used for the initial characterization of this PC/CeO2 NPs hybrid material system. Electrochemical measurements of SCs was performed using a potentio-galvanostat. It is found that the specific capacitance was improved by 30% using PC-CON system compared with pristine PC system.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Development of new materials hold the key to the fundamental progress in energy storage systems such as Li-ion battery, which is widely used in modern technologies because of their high energy density and extended cycle life. Among these materials, porous carbon is of particular interest because it provides high lithiation and excellent cycling capability by shortening the transport length for Li+ ions with large electrode/electrolyte interface. It has also been demonstrated that transition metal oxide nanoparticle can enhance surface electrochemical reactivity and increase the capacity retention capability for higher number of cycles. Here we investigate porous carbon/ceria (CeO2) nanoparticles composites as an anode material. The high redox potential of ceria is expected to provide a higher potential window as well as increase the specific capacity and energy density of the system. Scanning Electron Microscopy (SEM), X-Ray Diffraction (XRD), Transmission Electron Microscopy (TEM) is used for material characterization, while battery analyzer is used for measuring the electrochemical performance of the battery.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
This paper presents development of renewable energy production and storage devices employing nanomaterials and smart materials. The use of carbon nanotubes (CNTs) and graphene nanosheets (GNS) to improve the performance and durability of wind turbine and wave rotor blades will be explained. While GNS are primary used for the performance enhancement of the resin system called Nanoresin, CNT Nanoforests and Nanofilms are used to improve the performance of fiber systems in high-performance Nanocomposites. In addition, the use of CNTs and piezo-nanofibers will be explained as the health monitoring and smart systems within the composites. A self-healing mechanism will also be explained within the composites using these materials. Next the use of CNTs as gas diffusion layers and CNTs combined with in-situ generated platinum nanoparticles as catalyst layers will be explained to improve the performance, efficiency, and durability of proton exchange membrane fuel cells while reducing their costs, weight, and size. In addition, the use of CNTs and GNSs to improve the efficiency and performance of polymer solar cells will be explained. Finally, the use of CNTs and GNSs to enhance the performance, efficiency, and durability of batteries and supercapacitors while reducing their costs, weight, and size will be discussed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Bending piezoelectric transducers have the ability to harvest energy from aeroelastic vibrations induced by the ambient airflow. Such harvesters can have useful applications in the operation of low power devices, and their relatively small size makes them ideal for use in urban environments over civil infrastructure. One of the areas of focus regarding piezoelectric energy harvesting is the circuit topology used to store the harvested power. This study aims to further investigate the increase in potential energy yield from the piezoelectric harvester by optimizing the circuitry connecting the piezoelectric transducer and the power storage interface. When compared to an optimal resistive load case, it has been shown that certain circuit topologies, specifically synchronized switching and discharging to a storage capacitor through an inductor (SSDCI), can increase the charging power by as much as 400% if the circuit is completely lossless. This paper proposes a strategy for making a self-sufficient SSDCI circuit capable of peak detection for the synchronized switching using analog components. Using circuit simulation software, the performance of this proposed self-sufficient circuit is compared to an ideal case, and the effectiveness of the self-sufficient circuit strategy is discussed based on these simulation results. Further investigation of a physical working model of the new circuit proposal will be developed and experimental results of the circuit’s performance obtained and compared to the estimated performance from the model.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
In construction sector marble and granite are widespread because of their unique properties through the centuries. The issue of repair in these materials is crucial in structural integrity and maintenance of the monuments through the world, as well as in modern buildings. In this study fracture experiments on granite specimens are conducted. The goal is to compare the typical acoustic emission (AE) signals from different modes (namely bending and shear) in plain granite and marble specimens as well as repaired in the crack surface with polyester adhesive. The distinct signature of the cracking modes is reflected on acoustic waveform parameters like the amplitude, rise time and frequency. Conclusions about how the repair affects the mechanical properties as well as the acoustic waveform parameters are drawn. Results show that AE helps to characterize the shift between dominant fracture modes using a simple analysis of AE descriptors as well as the integrity of the specimen (plain or repaired). This offers the potential for in-situ application mainly in the maintenance of the monuments where the need for continuous and nondestructive monitoring is imperative, but always care should be taken for the distortion of the signal, which increases with the propagation distance and can seriously mask the results in an actual case.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Oil refinery production of fuels is becoming more challenging as a result of the changing world supply of crude oil towards properties of higher density, higher sulfur concentration, and higher acidity. One such production challenge is an increased risk of naphthenic acid corrosion that can result in various surface degradation profiles of uniform corrosion, non-uniform corrosion, and localized pitting in piping systems at temperatures between 150°C and 400°C. The irregular internal surface topology and high external surface temperature leads to a challenging in-service monitoring application for accurate pipe wall thickness measurements. Improved measurement technology is needed to continuously profile the local minimum thickness points of a non-uniformly corroding surface. The measurement accuracy and precision must be sufficient to provide a better understanding of the integrity risk associated with refining crude oils of higher acid concentration. This paper discusses potential technologies for measuring localized internal corrosion in high temperature steel piping and describes the approach under investigation to apply flexible ultrasonic thin-film piezoelectric transducer arrays fabricated by the sol-gel manufacturing process. Next, the elastic wave beam profile of a sol-gel transducer is characterized via photoelastic visualization. Finally, the variables that impact measurement accuracy and precision are discussed and a maximum likelihood statistical method is presented and demonstrated to quantify the measurement accuracy and precision of various time-of-flight thickness calculation methods in an ideal environment. The statistical method results in confidence values analogous to the a90 and a90/95 terminology used in Probability-of-Detection (POD) assessments.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Interim storage of spent nuclear fuel from reactor sites has gained additional importance and urgency for resolving waste-management-related technical issues. In total, there are over 1482 dry cask storage system (DCSS) in use at US plants, storing 57,807 fuel assemblies. Nondestructive material condition monitoring is in urgent need and must be integrated into the fuel cycle to quantify the “state of health”, and more importantly, to guarantee the safe operation of radioactive waste storage systems (RWSS) during their extended usage period. A state-of-the-art nuclear structural health monitoring (N-SHM) system based on in-situ sensing technologies that monitor material degradation and aging for nuclear spent fuel DCSS and similar structures is being developed. The N-SHM technology uses permanently installed low-profile piezoelectric wafer sensors to perform long-term health monitoring by strategically using a combined impedance (EMIS), acoustic emission (AE), and guided ultrasonic wave (GUW) approach, called "multimode sensing", which is conducted by the same network of installed sensors activated in a variety of ways. The system will detect AE events resulting from crack (case for study in this project) and evaluate the damage evolution; when significant AE is detected, the sensor network will switch to the GUW mode to perform damage localization, and quantification as well as probe "hot spots" that are prone to damage for material degradation evaluation using EMIS approach. The N-SHM is expected to eventually provide a systematic methodology for assessing and monitoring nuclear waste storage systems without incurring human radiation exposure.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The power output of a vibration energy harvesting device is highly sensitive to uncertainties in materials, manufacturing,
and operating conditions. Although the use of a nonlinear spring (e.g., snap-through mechanism) in energy harvesting
device has been reported to reduce the sensitivity of power output with respect to the excitation frequency, the nonlinear
spring characteristic remains significantly sensitive and it causes unreliable power generation. In this paper, we present a
reliability-based design optimization (RBDO) study of vibration energy harvesters. For a nonlinear harvester, a purely
mechanical nonlinear spring design implemented in the middle of cantilever beam harvester is considered in the study.
This design has the curved section in the center of beam that causes bi-stable configuration. When vibrating, the inertia
of the tip mass activates the curved shell to cause snap-through buckling and make the nature of vibration nonlinear. In
this paper, deterministic optimization (DO) is performed to obtain deterministic optimum of linear and nonlinear energy
harvester configuration. As a result of the deterministic optimization, an optimum bi-stable vibration configuration of
nonlinear harvester can be obtained for reliable power generation despite uncertainty on input vibration condition. For
the linear harvester, RBDO is additionally performed to find the optimum design that satisfies a target reliability on
power generation, while accounting for uncertainty in material properties and geometric parameters.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Vibration energy harvesting is the transformation of vibration energy to electrical energy. The motivation of
this work is to use vibration energy harvesting to power wireless sensors that could be used in inaccessible or
hostile environments to transmit information for condition health monitoring. Although considerable work has
been done in the area of energy harvesting, there is still a demand for making a robust and small vibration
energy harvesters from random excitations in a real environment that can produce a reliable amount of energy.
Parametrically excited harvesters can have time-varying stiffness. Parametric amplification is used to tune
vibration energy harvesters to maximize energy gains at system superharmonics, often at twice the first natural
frequency. In this paper the parametrically excited harvester with cubic and cubic parametric nonlinearity is
introduced as a novel work. The advantages of having cubic and cubic nonlinearity are explained theoretically
and experimentally.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Over the last decade, cantilever energy harvesters gained immense popularity owing to the simplicity of the design and piezoelectric energy harvesting (PEH) using the cantilever design has undergone considerable evolution. The major drawback of a vibrating cantilever beam is its vulnerability to fatigue over a period of time. This article brings forth an experimental investigation into the phenomenon of fatigue of a PEH cantilever beam. As there has been very little literature reported in this area, an effort has been made to scrutinize the damage due to fatigue in a linear vibrating cantilever PEH beam consisting of an aluminum substrate with a piezoelectric macro-fiber composite (MFC) patch attached near the root of the beam and a tip mass attached to the beam. The beam was subjected to transverse vibrations and the behavior of the open circuit voltage was recorded with passing time. Moreover, electro-mechanical admittance readings were obtained periodically using the same MFC patch as a Structural health monitoring (SHM) sensor to assess the health of the PEH beam. The results show that with passing time the PEH beam underwent fatigue in both the substrate and MFC, which is observed in a complimentary trend in the voltage and admittance readings. The claim is further supported using the variation of root mean square deviation (RMSD) of the real part of admittance (conductance) readings. Thus, this study concludes that the fatigue issue should be addressed in the design of PEH for long term vibration energy harvesting.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Resistance spot welding is extensively used to join sheet steel in the automotive industry. Ultrasonic non-destructive
techniques for evaluation of the mechanical properties of resistance spot welding are presented. The aim of this
study is to develop the capability of the ultrasonic techniques as an efficient tool in the assessment of the welding
characterization. Previous researches have indicated that the measurements of ultrasonic attenuation are sensitive to
grain- size variations in an extensive range of metallic alloys. Other researchers have frequently described grain
sizes which are able to have significant effects on the physical characteristics of the material. This research provides
a novel method to estimate the tension-shear strengths of the resistance spot welding directly from the ultrasonic
attenuation measurements. The effects of spot welding parameters on the ultrasonic waves are further investigated.
The results confirm that it is possible to determine the spot welding parameters for individual quality by using
ultrasonic test.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The opening width of fatigue crack was very small, and conventional Bobbin
probe was very difficult to detect it in steam generator tubes. Different sizes of 8 fatigue cracks
were inspected using bobbin probe rotating probe. The analysis results showed that, bobbin
probe was not sensitive for fatigue crack even for small through wall crack mixed with denting
signal. On the other hand, the rotating probe was easily to detect all cracks. Finally, the OD
phase to depth curve for fatigue crack using rotating probe was established and the results
agreed very well with the true crack size.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Solar energy has been used in many different ways, including solar water heater, solar cooking, space
heating, and electricity generation. The major drawbacks of the solar energy conversion systems are the lower
conversion efficiency and higher manufacturing and replacement costs. In order to eliminate these obstacles, many
studies were focused on the energy and cost efficiencies of the solar cells (particularly dye sensitized solar cells –
DSSC and thin film solar cells). In the present study, TiO2 nanofibers incorporated with graphene nanoflakes (0, 2,
4, and 8wt.%) were produced using electrospinning process. The chemical utilized for the electrospinning process
included poly (vinyle acetate), dimetylfomamide (DMF), titanium (IV) isopropoxide and acetic acid in the presence
and absence of graphene nanoflakes. The resultant nanofibers were heat treated at 300 °C for 2 hrs in a standard
oven to remove all the organic parts of the nanofibers, and then further heated up to 500 °C in an argon atmosphere
for additional 12 hrs to crystalline the nanofibers. SEM, TEM and XRD studies showed that graphene and TiO2
nanofibers are well integrated in the nanofiber structures. This study may guide some of the scientists and engineers
to tailor the energy bang gap structures of some of the semiconductor materials for different industrial applications,
including DSSC, water splitting, catalyst, batteries, and fuel cell.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.