You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
24 June 1980Visible-To-Infrared Image Converter For Dynamic Infrared Target Simulation Applications
A visible-to-infrared image converter based on the Hughes 2-in. liquid-crystal light valve is under development at Hughes Research Laboratories. The system is designed to operate in the 2- to 5-μm and 8- to 12-μm spectral ranges. The device consists of an IR-visible transparent input substrate electrode; an IR-transparent, visible-sensitive photoconductor (CdS); and a thin layer of liquid crystal acting as the light modulator medium. The readout window is transparent in the IR range used. The required IR dynamic scenery, generated for convenience in a visible form (e.g., on a CRT), is projected onto the input window, thus activating the photoconductor. This spatial voltage pattern of the required image is transferred to the liquid crystal, thus converting the image to a birefringent spatial modulation. The polarized infrared readout beam projected through the light valve is modulated as it passes through the liquid crystal. The latter operates in the 90° twisted nematic mode. The required IR scenery is then formed as the polarization-modulated IR beam passes a 90° cross-polarizer. The device offers the advantages of (1) maximum flexibility in presenting versatile dynamic IR sceneries and (2) high resolution and contrast. Good performance was demonstrated by a device operating in the 2- to 5-μm range. The proposed approach strongly benefits from the technology that has been developed for the visible-to-visible liquid-crystal light valve over the last few years.
The alert did not successfully save. Please try again later.
J. Grinberg, U. Efron, M. J. Little, W. P. Bleha, "Visible-To-Infrared Image Converter For Dynamic Infrared Target Simulation Applications," Proc. SPIE 0226, Infrared Imaging Systems Technology, (24 June 1980); https://doi.org/10.1117/12.958731