You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
27 June 1988Phantom Design To Evaluate A Three-Dimensional Motion Correction Algorithm In DSA Of The Coronary Arteries
A phantom has been designed which simulates the environment of the left ventricle in the chest. The phantom consists of 5 tubes approximating arteries with contrast, layers of acrylic plastic to simulate soft tissue, bones, and a bladder which can be inflated with a dilute contrast solution to simulate the left ventricle. The parts of the phantom can be adjusted to provide known amounts of motion in three dimensions and is used in the evaluation of a three-dimensional motion correction algorithm which is described in detail in a companion paper. Images of the phantom appear to be like those seen in x-ray imaging of the chest. The results using the phantom to test the registration algorithms show that a significant improvement in the subtraction images of the phantom can be achieved in the presence of simulated three-dimensional motion, when compared to conventional subtraction.
The alert did not successfully save. Please try again later.
David R. Pickens, J. Michael Fitzpatrick, "Phantom Design To Evaluate A Three-Dimensional Motion Correction Algorithm In DSA Of The Coronary Arteries," Proc. SPIE 0914, Medical Imaging II, (27 June 1988); https://doi.org/10.1117/12.968703