You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
18 October 2016Contextual descriptors and neural networks for scene analysis in VHR SAR images
The development of SAR technology during the last decade has made it possible to collect a huge amount of data over many regions of the world. In particular, the availability of SAR images from different sensors, with metric or sub-metric spatial resolution, offers novel opportunities in different fields as land cover, urban monitoring, soil consumption etc. On the other hand, automatic approaches become crucial for the exploitation of such a huge amount of information. In such a scenario, especially if single polarization images are considered, the main issue is to select appropriate contextual descriptors, since the backscattering coefficient of a single pixel may not be sufficient to classify an object on the scene. In this paper a comparison among three different approaches for contextual features definition is presented so as to design optimum procedures for VHR SAR scene understanding. The first approach is based on Gray Level Co- Occurrence Matrix since it is widely accepted and several studies have used it for land cover classification with SAR data. The second approach is based on the Fourier spectra and it has been already proposed with positive results for this kind of problems, the third one is based on Auto-associative Neural Networks which have been already proven effective for features extraction from polarimetric SAR images. The three methods are evaluated in terms of the accuracy of the classified scene when the features extracted using each method are considered as input to a neural network classificator and applied on different Cosmo-SkyMed spotlight products.
The alert did not successfully save. Please try again later.
Fabio Del Frate, Matteo Picchiani, Alessia Falasco, Giovanni Schiavon, "Contextual descriptors and neural networks for scene analysis in VHR SAR images," Proc. SPIE 10003, SAR Image Analysis, Modeling, and Techniques XVI, 1000304 (18 October 2016); https://doi.org/10.1117/12.2241759