You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
22 February 2017Optical propagation in anisotropic metamaterials
Anisotropic metamaterials are widely used in the field of optics because of their unique electromagnetic properties. These metamaterials can be made from multilayer metallo-dielectric structures. Such stacks can be represented as an anisotropic bulk medium using effective medium theory. Optical properties of anisotropic media are mostly described in terms of effective parameters such as permittivity and permeability, or alternatively, refractive index and characteristic impedance. These properties depend not only on the wavelength and polarization but also the direction of the optical wave-vector. In this work optical wave propagation through such anisotropic media is studied in detail. The Berreman 4 × 4 matrix along with appropriate boundary conditions is used to determine all electric and magnetic fields inside and outside the structure. The overall transmission and reflection are investigated as a function of the thickness of each layer (metal/dielectric), the number of layers, and the wavelength for oblique incidence. The validity of the effective medium theory is also investigated by changing the thickness and number of layers.
The alert did not successfully save. Please try again later.
Rudra Gnawali, Partha P. Banerjee, Joseph W. Haus, Dean R. Evans, "Optical propagation in anisotropic metamaterials," Proc. SPIE 10098, Physics and Simulation of Optoelectronic Devices XXV, 100981F (22 February 2017); https://doi.org/10.1117/12.2255757