You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
22 February 2017Device design for global shutter operation in a 1.1-μm pixel image sensor and its application to near infrared sensing
Global shutter is a feature of some CMOS image sensors that allows capture of an entire image at a single point in time. We discuss how the device architecture of InVisage’s QuantumFilm enables global shutter operation by controlling the bias on the device stack without an additional transistor, giving high shutter efficiency in a 1.1 μm pixel CMOS image sensor. We use drift-diffusion device simulations to inform our design and reveal device and material properties that are key for carrier selectivity. Based on our device model, we fabricated global-shutter-enabled QuantumFilm devices for near infrared sensing applications and present a characterization of our devices.
The alert did not successfully save. Please try again later.
Zach M. Beiley, Robin Cheung, Erin F. Hanelt, Emanuele Mandelli, Jet Meitzner, Jae Park, Andras Pattantyus-Abraham, Edward H. Sargent, "Device design for global shutter operation in a 1.1-um pixel image sensor and its application to near-infrared sensing," Proc. SPIE 10098, Physics and Simulation of Optoelectronic Devices XXV, 100981L (22 February 2017); https://doi.org/10.1117/12.2253219