You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
20 February 2017Optimization of optical losses in waveguide component manufacturing
We report on the development and optimization of key performance properties of multimode silicone polymer waveguides, manufactured for 850 nm optical propagation. These developments are based on photopatternable, mechanically flexible, low-loss, gradient index waveguides. Cross sectional waveguide core sizes ranging from 40 μm x 50 μm to greater than 60 μm x 60 μm are assessed with optical analysis of component losses such as crossings and coupling between OM4 fiber and waveguide. Assessments of these values, led to optimization of waveguide size and lower total optical system losses. Methods of manufacture, preparation, and analysis are discussed in detail along with performance results.
The alert did not successfully save. Please try again later.
Brandon W. Swatowski, Maynard G. Hyer, Debra A. Shepherd, W. Ken Weidner, Jon V. Degroot Jr., "Optimization of optical losses in waveguide component manufacturing," Proc. SPIE 10109, Optical Interconnects XVII, 1010904 (20 February 2017); https://doi.org/10.1117/12.2252054