Translator Disclaimer
28 January 2017 A comparative study of optical concentrators for visible light communications
Author Affiliations +
Given the imminent radio frequency spectrum crunch, Visible Light Communication (VLC) is being proposed as an alternative wireless technology allowing for scalable connectivity to potentially millions of mobile and Internet-of- Things (IoT) devices. A VLC system uses a photo-detector (PD) receiver that converts the optically modulated light from a light source into a modulated electrical signal. The corresponding receiver electrical bandwidth is typically inversely proportional to the PD active area. Consequently, to construct a high-speed VLC link, the PD active area is often substantially reduced and an optical concentrator is used to enhance the receiver collection area. However, to achieve high concentrating factor, the link field-of-view (FOV) needs to be narrow due to the étendue conservation in linear passive optical systems. This paper studies a Fluorescent Concentrator (FC) that breaks this étendue conservation. The FC is not only based on reflective and refractive principles but also makes use of fluorescence process. A comparison between the FC and conventional optical concentrators, namely Compound Parabolic Concentrator (CPC) is also investigated. The trade-off between received signal strength and incoming link angle is demonstrated over 60° coverage. Experimental results show that performance degradation as the link angle increases using FC-based receivers is significantly lower than for conventional CPC.
© (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Rahmat Mulyawan, Ariel Gomez, Hyunchae Chun, Sujan Rajbhandari, Pavlos P. Manousiadis, Dimali A. Vithanage, Grahame Faulkner, Graham A. Turnbull, Ifor D. W. Samuel, Stephen Collins, and Dominic O'Brien "A comparative study of optical concentrators for visible light communications", Proc. SPIE 10128, Broadband Access Communication Technologies XI, 101280L (28 January 2017);

Back to Top