You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
9 March 2017Choosing anisotropic voxel dimensions in optimization-based image reconstruction for limited angle CT
Resolution of reconstructions in limited angle X-ray computed tomography (CT) is inherently anisotropic due to the limited angular range of acquired projections. This justifies the use of anisotropic voxels in limited angle image reconstruction. For analytic reconstruction algorithms, this only changes the intervals at which the reconstruction is sampled, but for optimization-based image reconstruction, changing the voxel dimensions redefines the reconstruction optimization problem and can have pronounced effects on the reconstructed image. In this work we investigate the choice of anisotropic voxel dimensions in optimization-based image reconstruction for limited angle CT. In particular, a 2D simulation study is performed to assess the optimal choice of pixel dimension in the longitudinal direction - the direction of lowest resolution. It is demonstrated that as this pixel dimension is decreased, deterioration of system matrix conditioning can lead to severe distortion in reconstructions performed with low regularization strength. This conditioning issue occurs at approximately the point where the number of pixels is equal to the number of measurements. While the distortion can be mitigated by increasing regularization, our results suggest that there are structures which are only resolvable by using even smaller voxel sizes.
The alert did not successfully save. Please try again later.
C. Sheng, R. Chaudhari, Sean D. Rose, Emil Y. Sidky, Xiaochuan Pan, "Choosing anisotropic voxel dimensions in optimization-based image reconstruction for limited angle CT," Proc. SPIE 10132, Medical Imaging 2017: Physics of Medical Imaging, 101322X (9 March 2017); https://doi.org/10.1117/12.2254292