In this paper, we employ Halton low-discrepancy sequences to calculate the volume of the lung lesions. The proposed method directly compute the volume without the procedure of three-dimension (3D) model reconstruction and surface triangulation, which significantly improves the efficiency and reduces the complexity. The main steps of the proposed method are: (1) generate a certain number of random points in each slice using Halton low-discrepancy sequences and calculate the lesion area of each slice through the proportion; (2) obtain the volume by integrating the areas in the sagittal direction. In order to evaluate our proposed method, the experiments were conducted on the sufficient data sets with different size of lung lesions. With the uniform distribution of random points, our proposed method achieves more accurate results compared with other methods, which demonstrates the robustness and accuracy for the volume calculation of CT lung lesions. In addition, our proposed method is easy to follow and can be extensively applied to other applications, e.g., volume calculation of liver tumor, atrial wall aneurysm, etc. |
ACCESS THE FULL ARTICLE
No SPIE Account? Create one
Lung
Computed tomography
3D modeling
Error analysis
Data modeling
Image segmentation
Medical imaging