You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
11 April 2017Development of electrothermal actuator (ETA) with low activation voltage
Electrothermal actuators (ETAs) are novel active materials that can generate different kinds of motions by thermal
expansion induced from Joule heating. The degree of expansion, which influences the deformation and response force, is
determined by the coefficient of thermal expansion (CTE) of the material. In order for the material to be activated, it is
necessary to create conductive network for Joule heating to take place. As a result, one of the most common methods for
creating ETAs is to insert high electrical and thermal conductive filler into the matrix, which allows for fast and uniform
heat distribution though out the material, thus initiate the actuation. In this study, we present the characterization results
of newly developed ETA composites that has ultra-low activation voltage requirement (9V). To create the novel ETA
composites, polydimethylsiloxane (PDMS) is coated to conductive networks which are constructed from high electrical
conductive fillers such as carbon nanotubes. The actuation performance of the novel ETA composites is characterized in
terms of the conductive network distribution, CTE, heat capacity, change in thermal gradient, and its actuation
behaviour.
The alert did not successfully save. Please try again later.
Yu-Chen Sun, Benjamin Leaker, Hani E. Naguib, "Development of electrothermal actuator (ETA) with low activation voltage," Proc. SPIE 10165, Behavior and Mechanics of Multifunctional Materials and Composites 2017, 101650Q (11 April 2017); https://doi.org/10.1117/12.2263610