You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
5 April 2017Scattering of longitudinal acoustic phonons in thin silicon membranes
The lifetimes of sub THz acoustic phonon modes determine the intrinsic quality factor of nanomechanical resonators, and control the ultimate limits to sensing mass change, liquid density, charge and temperature with such devices. Recent experiments have provided direct measurements of longitudinal acoustic phonon lifetimes in the higher GHz to THz regime for silicon. However, the results do not definitively resolve the relative contributions of intrinsic mechanisms (such as Akhiezer) versus extrinsic mechanisms (such as boundary scattering), particularly at the higher frequencies. This work focuses on understanding how these mechanisms influence phonon transport through acoustic measurements in nanostructures with well-characterized surface morphologies. We employ a femtosecond laser pump-probe setup to excite and measure the lifetimes of longitudinal acoustic phonons in ultrathin silicon membranes with thicknesses down to 36 nm. We show that the phonon lifetime for membranes thicker than 200 nm is limited intrinsically by Akhiezer mechanism. In thinner membranes, boundary scattering is the most dominant dissipation mechanism. We use a surface specularity parameter based on Kirchhoff’s approximation to correctly predict the observed trend. Our results provide insights to understanding thermal and acoustic transport in nanostructures.
The alert did not successfully save. Please try again later.
Dhruv Gelda, Marc G. Ghossoub, Krishna V. Valavala, Manjunath C. Rajagopal, Sanjiv Sinha, "Scattering of longitudinal acoustic phonons in thin silicon membranes," Proc. SPIE 10170, Health Monitoring of Structural and Biological Systems 2017, 101701K (5 April 2017); https://doi.org/10.1117/12.2260373