You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
5 April 2017Development of a real-time bridge structural monitoring and warning system: a case study in Thailand
Regarded as one of the physical aspects under societal and civil development and evolution, engineering structure is required to support growth of the nation. It also impacts life quality and safety of the civilian. Despite of its own weight (dead load) and live load, structural members are also significantly affected by disaster and environment. Proper inspection and detection are thus crucial both during regular and unsafe events. An Enhanced Structural Health Monitoring System Using Stream Processing and Artificial Neural Network Techniques (SPANNeT) has been developed and is described in this paper. SPANNeT applies wireless sensor network, real-time data stream processing and artificial neural network based upon the measured bending strains. Major contributions include an effective, accurate and energy-aware data communication and damage detection of the engineering structure. Strain thresholds have been defined according to computer simulation results and the AASHTO (American Association of State Highway and Transportation Officials) LRFD (Load and Resistance Factor Design) Bridge Design specifications for launching several warning levels. SPANNeT has been tested and evaluated by means of computer-based simulation and on-site levels. According to the measurements, the observed maximum values are 25 to 30 microstrains during normal operation. The given protocol provided at least 90% of data communication reliability. SPANNeT is capable of real-time data report, monitoring and warning efficiently conforming to the predefined thresholds which can be adjusted regarding user’s requirements and structural engineering characteristics.
The alert did not successfully save. Please try again later.
I. Khemapech, W. Sansrimahachai, M. Toachoodee, "Development of a real-time bridge structural monitoring and warning system: a case study in Thailand," Proc. SPIE 10170, Health Monitoring of Structural and Biological Systems 2017, 101702U (5 April 2017); https://doi.org/10.1117/12.2263534