We introduce a high-speed 3-D shape measurement technique based on composite phase-shifting fringes and a stereo camera system. Epipolar constraint is adopted to search the corresponding point independently without additional images. Meanwhile, by analysing the 3-D position and the main wrapped phase of the corresponding point, pairs with an incorrect 3-D position or considerable phase difference are effectively rejected. Then all the qualified corresponding points are corrected, and the unique one as well as the related period order is selected through the embedded triangular wave. Finally, considering that some points can only be captured by a single camera in some shading areas, the final period order of these points in one camera and the one of their corresponding points in another camera always have different values, so left-right consistency check is employed to eliminate those erroneous period orders in this case. Several experiments on both static and dynamic scenes are performed, verifying that our method can achieve a speed of 120 frames per second (fps) with 25-period fringe patterns for fast, dense, and accurate 3-D measurement.
|