You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
24 August 2017Template-matched filtering for automatic object segmentation in real-life scenes
A reliable approach for object segmentation based on template-matching filters is proposed. The system employs an adaptive strategy for the generation of space-variant filters which take into account several versions of the target and local statistical properties of the input scene. Moreover, the proposed method considers the geometric modifications of the target while is moving through a video sequence. The detection accuracy of the matched filter brings the location of the target of interest. The estimated location coordinates are used to compute the support area covered by the target using watershed segmentation technique. In each frame, the filter adapts according the geometrical changes of the target in order to estimate its current support region. Experimental tests carried out in a video sequence show that the proposed system yields a very good performance for accuracy detection, and object segmentation efficiency in real-life scenes.
The alert did not successfully save. Please try again later.
Kenia Picos, Adán Hirales-Carbajal, Victor H. Díaz-Ramírez, "Template-matched filtering for automatic object segmentation in real-life scenes," Proc. SPIE 10395, Optics and Photonics for Information Processing XI, 103950L (24 August 2017); https://doi.org/10.1117/12.2273563