Paper
5 October 2017 Active multispectral reflection fingerprinting of persistent chemical agents
H. D. Tholl, F. Münzhuber, J. Kunz, M. Raab, M. Rattunde, S. Hugger, F. Gutty, A. Grisard, C. Larat, D. Papillon, M. Schwarz, E. Lallier, M. Kastek, T. Piatkowski, F. Brygo, C. Awanzino, F. Wilsenack, A. Lorenzen
Author Affiliations +
Proceedings Volume 10434, Electro-Optical Remote Sensing XI; 104340C (2017) https://doi.org/10.1117/12.2277937
Event: SPIE Security + Defence, 2017, Warsaw, Poland
Abstract
Remote detection of toxic chemicals of very low vapour pressure deposited on surfaces in form of liquid films, droplets or powder is a capability that is needed to protect operators and equipment in chemical warfare scenarios and in industrial environments. Infrared spectroscopy is a suitable means to support this requirement. Available instruments based on passive emission spectroscopy have difficulties in discriminating the infrared emission spectrum of the surface background from that of the contamination. Separation of background and contamination is eased by illuminating the surface with a spectrally tune-able light source and by analyzing the reflectivity spectrum.

The project AMURFOCAL (Active Multispectral Reflection Fingerprinting of Persistent Chemical Agents) has the research topic of stand-off detection and identification of chemical warfare agents (CWAs) with amplified quantum cascade laser technology in the long-wave infrared spectral range. The project was conducted under the Joint Investment Programme (JIP) on CBRN protection funded through the European Defence Agency (EDA).

The AMURFOCAL instrument comprises a spectrally narrow tune-able light source with a broadband infrared detector and chemometric data analysis software. The light source combines an external cavity quantum cascade laser (EC-QCL) with an optical parametric amplifier (OPA) to boost the peak output power of a short laser pulse tune-able over the infrared fingerprint region. The laser beam is focused onto a target at a distance between 10 and 20 m. A 3D data cube is registered by tuning the wavelength of the laser emission while recording the received signal scattered off the target using a multi-element infrared detector. A particular chemical is identified through the extraction of its characteristic spectral fingerprint out of the measured data.

The paper describes the AMURFOCAL instrument, its functional units, and its principles of operation.
© (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
H. D. Tholl, F. Münzhuber, J. Kunz, M. Raab, M. Rattunde, S. Hugger, F. Gutty, A. Grisard, C. Larat, D. Papillon, M. Schwarz, E. Lallier, M. Kastek, T. Piatkowski, F. Brygo, C. Awanzino, F. Wilsenack, and A. Lorenzen "Active multispectral reflection fingerprinting of persistent chemical agents", Proc. SPIE 10434, Electro-Optical Remote Sensing XI, 104340C (5 October 2017); https://doi.org/10.1117/12.2277937
Lens.org Logo
CITATIONS
Cited by 3 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Quantum cascade lasers

Infrared detectors

3D acquisition

Chemometrics

Infrared radiation

Infrared sensors

Laser applications

Back to Top