You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
2 January 2018Development of functional materials by using ultrafast laser pulses
The polarization-dependent periodic nanostructures inside various materials are successfully induced by ultrafast laser pulses. The periodic nanostructures in various materials can be empirically classified into the following three types: (1) structural deficiency, (2) expanded structure, (3) partial phase separation. Such periodic nanostructures exhibited not only optical anisotropy but also intriguing electric, thermal, and magnetic properties. The formation mechanisms of the periodic nanostructure was interpreted in terms of the interaction between incident light field and the generated electron plasma. Furthermore, the fact that the periodic nanostructures in semiconductors could be formed empirically only if it is indirect bandgap semiconductor materials indicates the stress-dependence of bandgap structure and/or the recombination of the excited electrons are also involved to the nanostructure formation. More recently we have also confirmed that the periodic nanostructures in glass are related to whether a large amount of non-bridged oxygen is present. In the presentation, we demonstrate new possibilities for functionalization of common materials ranging from an eternal 5D optical storage, a polarization imaging, to a thermoelectric conversion, based on the indicated phenomena.
The alert did not successfully save. Please try again later.
Y. Shimotsuma, M. Sakakura, K. Miura, "Development of functional materials by using ultrafast laser pulses," Proc. SPIE 10456, Nanophotonics Australasia 2017, 104563A (2 January 2018); https://doi.org/10.1117/12.2282426