You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
19 February 2018Fluorescence lifetime imaging of microviscosity changes during ER autophagy in live cells
Unfolded or misfolded protein accumulation inside Endoplasmic Reticulum (ER) will cause ER stress and subsequently will activate cellular autophagy to release ER stress, which would ultimately result in microviscosity changes. However, even though, it is highly significant to gain a quantitative assessment of microviscosity changes during ER autophagy to study ER stress and autophagy behaviors related diseases, it has rarely been reported yet. In this work, we have reported a BODIPY based fluorescent molecular rotor that can covalently bind with vicinal dithiols containing nascent proteins in ER and hence can result in ER stress through the inhibition of the folding of nascent proteins. The change in local viscosity, caused by the release of the stress in cells through autophagy, was quantified by the probe using fluorescence lifetime imaging. This work basically demonstrates the possibility of introducing synthetic chemical probe as a promising tool to diagnose ER-viscosity-related diseases.
The alert did not successfully save. Please try again later.
Ying He, Soham Samanta, Wanjun Gong, Wufan Liu, Wenhui Pan, Zhigang Yang, Junle Qu II, "Fluorescence lifetime imaging of microviscosity changes during ER autophagy in live cells," Proc. SPIE 10495, Biophotonics and Immune Responses XIII, 104950R (19 February 2018); https://doi.org/10.1117/12.2293440