Translator Disclaimer
20 February 2018 Laser spectroscopy of highly doped NV- centers in diamond
Author Affiliations +
In this paper, prospects of using diamond with NV− centers as a gain medium have been studied. Spectroscopic characterization of NV− centers in diamond as well as absorption saturation and pump-probe experiments have been carried out. Absorption and emission cross-sections were estimated to be 2.8 × 10-17 cm2 and 4.3 × 10-17 cm2 at the maximum of absorption and emission bands, respectively. It was observed from emission spectra under pulse excitation that some NV− are photoionized to NV0 centers with ZPL at 575 nm. Room temperature luminescence lifetime of NV− centers was measured to be 12ns, which is close to the previously reported lifetime in bulk diamond (~13ns). Saturated transmission was only about 11% of calculated values even at energy fluence much higher than the saturation flux. Two excited state absorptions (ESAs) with different relaxation times (“fast-decay” and “slow-decay with relaxation times of ~500 ns and several tens of microseconds, respectively) were revealed in transmission decay kinetics at 632 nm. Kinetics of transmission at 670 nm was dominated by “slow-decay” ESA process. Kinetics of dk/k0 in shorter wavelength were strongly dominated by “fast-decay” ESA process. These results definitively indicate that stimulated emission of NV− centers is suppressed by photoionization and ESAs and the possibility of diamond lasers based on NV− centers is low.
© (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Shova D. Subedi, Vladimir V. Fedorov, Jeremy Peppers, Dmitry V. Martyshkin, Sergey B. Mirov, Linbo Shao, and Marko Loncar "Laser spectroscopy of highly doped NV- centers in diamond", Proc. SPIE 10511, Solid State Lasers XXVII: Technology and Devices, 105112D (20 February 2018);

Back to Top