You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
29 January 2018Experimental characterization of first-order polarization-mode dispersion in multi-core fiber
Multi-core fiber transmissions provide great capacity scalability for future optical backbone and access networks. Unfortunately, the polarization-mode dispersion has not been experimentally investigated so far in single-mode multi-core fibers. In this scenario, the differential group delay may present a time-varying nature in each core because of the temporal fluctuations of the optical medium. In order to investigate this phenomenon, we present a coupled-mode theory based on local modes to simulate numerically the polarization-mode dispersion in such optical media and we report extensive experimental measurements of the time-varying differential group delay using a homogeneous 4-core multi-core fiber considering three different months. Our results indicate that the differential group delay presents a similar, but not identical, temporal evolution in the four cores.