You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
20 March 2018Hotspot detection based on surrounding optical feature
In recent years, various methods for hotspot detection during optical proximity correction (OPC) verification have been studied. They try to predict hotspots by analyzing optical features of aerial image such as peak intensity. However, detection accuracy in these conventional methods is still not sufficient. We cannot distinguish hotspots from nonhotspots by only focusing on aerial image of hotspot because one often becomes hotspot and the other does not despite of the same aerial images. On the other hand, optical features of pattern next to the hotspot are different even in such a case. Therefore, optical features which are extracted from surrounding patterns of hotspot are one of the promising metrics for hotspot detection. In this paper, we propose a new method to detect hotspots more accurately. A new metric, Surrounding Optical Feature (SOF), is introduced. SOF indicates optical features which are extracted from surrounding pattern of the evaluated pattern. The optical feature includes critical dimension (CD), normalized image log-slope (NILS), integral intensity, peak intensity of optical image. The proposed method consists of two steps. In step 1, appropriate SOF is extracted by using training data. In step 2, OPC verification is carried out with the SOF. The effectiveness of the proposed method is confirmed in the experimental comparisons.