You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
26 April 2018Non-uniformity correction mitigating the effect of lens temperature
Non-uniformity correction (NUC) is a standard procedure for infrared (IR) cameras. The effect of lens temperature, however, is often ignored during the implementation of a NUC. Ignoring the effect of temperature is acceptable if the lens temperature is at much lower than ambient temperature, whose irradiance onto the focal plane array (FPA) is much less than that of the scene. Ignoring the effect of temperature is also acceptable if the lens temperature during the calibration for NUC is the same as that during the scene collection. The change of the lens temperature in between the calibration for NUC and the scene collection, however, affects the performance. Such degradation in image quality is presented by the frames taken by a mid-wave infrared (MWIR) camera. An empirical law is established to mitigate the effect of lens temperature, which offers various options for NUC. As an example, we propose a four-point NUC that mitigates the effect of the lens temperature. We demonstrate its usefulness by applying it to the frames taken at various lens temperatures. The results are satisfactory.
The alert did not successfully save. Please try again later.
Charles C. Kim, Elisabeth Correa, "Non-uniformity correction mitigating the effect of lens temperature," Proc. SPIE 10625, Infrared Imaging Systems: Design, Analysis, Modeling, and Testing XXIX, 106250G (26 April 2018); https://doi.org/10.1117/12.2299519