You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
30 April 2018Generative adversarial networks for ground penetrating radar in hand held explosive hazard detection
The identification followed by avoidance or removal of explosive hazards in past and/or present conflict zones is a serious threat for both civilian and military personnel. This is a challenging task as extreme variability exists with respect to the objects, their environment and emplacement context. A goal is the development of automatic, or human-in-the-loop, sensor technologies that leverage engineering theories like signal processing, data fusion and machine learning. Herein, we explore the detection of buried explosive hazards (BEHs) in handheld ground penetrating radar (HH-GPR) via convolutional neural networks (CNNs). In particular, we investigate the potential for generative adversarial networks (GANs) to impute new data based on limited and class imbalance labeled data. Unsupervised GANs are trained and assessed at a qualitative level and their outputs are explored in different ways to quantitatively help train a CNN classifier. Overall, we found encouraging qualitative results and a list of hurdles that need to be overcome before we anticipate quantitative improvements.
The alert did not successfully save. Please try again later.
Charlie Veal, Joshua Dowdy, Blake Brockner, Derek T. Anderson, John E. Ball, Grant Scott, "Generative adversarial networks for ground penetrating radar in hand held explosive hazard detection," Proc. SPIE 10628, Detection and Sensing of Mines, Explosive Objects, and Obscured Targets XXIII, 106280T (30 April 2018); https://doi.org/10.1117/12.2307261