You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
15 May 2018Capture and identification of Salmonella Typhimurium from large volumes of water using phage filter
In this paper, a novel device named as phage filter is designed and presented to capture and identify a small number of Salmonella Typhimurium cells from large volumes of water. This phage filter is constructed from a filter chamber, filter frames on a spindle, strip-shape magnetoelastic filter elements, and a spinning speed control unit. The filter elements are made from Metglas 2826MB and coated with a specifically designed phage that only binds with Salmonella Typhimurium. These phage-coated filter elements can be held and arranged on the filter frames by magnetic force produced from couples of permanent magnets in the frame. Layers of filter frames are fixed on the spindle. The spindle with filter frames and filter elements can spin in the filter chamber and the spinning speed can be continuously adjusted. When the filter works, the tested water passes through the filter frame, and Salmonella Typhimurium cells striking on the filter elements can be bound by the phage on the element surfaces and removed from the tested water.
The alert did not successfully save. Please try again later.
Xu Lu, Songtao Du, Shin Horikawa, I-Hsuan Chen, Yuzhe Liu, Bryan Allen Chin, "Capture and identification of Salmonella Typhimurium from large volumes of water using phage filter," Proc. SPIE 10665, Sensing for Agriculture and Food Quality and Safety X, 106650D (15 May 2018); https://doi.org/10.1117/12.2304551