You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
Characterising the amount and the purity of nucleic acid is an important step in state of the art polymerase chain reaction (PCR). In most cases, the analysis is done by stand-alone equipment. For the measurement, a small amount out of the PCR-process has to be removed. Furthermore, the evaluation of the measured spectra occurs only at three wavelengths (230 nm, 260 nm, 280 nm). Therefore, it should be possible to monitor the PCR-process in situ. We demonstrate an illumination unit with three UV-LEDs (245 nm, 265 nm and 280 nm). Every LED is collimated by two lenses. Two longwave-pass filters merge the optical axes of the different wavelength. Lenses and filters are commercial available. The illumination unit is available with and without fiber coupling. The optical behavior of the illumination unit will be shown and discussed. Further, we investigate the observed peak position of the supporting points in dependence of the impurity concentration of an example solution.
The alert did not successfully save. Please try again later.
Ch. Möller, M. Hentschel, Th. Hensel, A. Müller, Ch. Heinze, O. Brodersen, Th. Ortlepp, "DNA analysis with UV-LEDs," Proc. SPIE 10680, Optical Sensing and Detection V, 1068013 (9 May 2018); https://doi.org/10.1117/12.2306761