Translator Disclaimer
Paper
13 July 2018 SCExAO, an instrument with a dual purpose: perform cutting-edge science and develop new technologies
Author Affiliations +
Abstract
The Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) instrument is an extremely modular high- contrast instrument installed on the Subaru telescope in Hawaii. SCExAO has a dual purpose. Its position in the northern hemisphere on a 8-meter telescope makes it a prime instrument for the detection and characterization of exoplanets and stellar environments over a large portion of the sky. In addition, SCExAO’s unique design makes it the ideal instrument to test innovative technologies and algorithms quickly in a laboratory setup and subsequently deploy them on-sky. SCExAO benefits from a first stage of wavefront correction with the facility adaptive optics AO188, and splits the 600-2400 nm spectrum towards a variety of modules, in visible and near infrared, optimized for a large range of science cases. The integral field spectrograph CHARIS, with its J, H or K-band high-resolution mode or its broadband low-resolution mode, makes SCExAO a prime instrument for exoplanet detection and characterization. Here we report on the recent developments and scientific results of the SCExAO instrument. Recent upgrades were performed on a number of modules, like the visible polarimetric module VAMPIRES, the high-performance infrared coronagraphs, various wavefront control algorithms, as well as the real-time controller of AO188. The newest addition is the 20k-pixel Microwave Kinetic Inductance Detector (MKIDS) Exoplanet Camera (MEC) that will allow for previously unexplored science and technology developments. MEC, coupled with novel photon-counting speckle control, brings SCExAO closer to the final design of future high-contrast instruments optimized for Giant Segmented Mirror Telescopes (GSMTs).
© (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
PROCEEDINGS
12 PAGES


SHARE
Advertisement
Advertisement
RELATED CONTENT

A 3 to 5 um camera for extrasolar planet...
Proceedings of SPIE (February 07 2003)
Recent progress in vector vortex coronagraphy
Proceedings of SPIE (September 14 2011)
Advanced speckle sensing for internal coronagraphs
Proceedings of SPIE (September 15 2011)
EPICS: the exoplanet imager for the E-ELT
Proceedings of SPIE (July 11 2008)

Back to Top