You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
10 July 2018Recent improvements on high-speed DEPFET detectors for x-ray astronomy
Sensors that are based on active pixels enable a flexible adaption to the needs of a scientific instrument. The DEPFET,∗ a p-channel field effect transistor implemented on a fully depleted silicon bulk, contains a so-called internal gate that serves as potential minimum for collected charge carriers generated by incident photons.1 The potentially collected electrons induce mirror charges in the FET channel and change its conductivity. It changes the current through the DEPFET or – for a fixed current – the source potential proportionally to the collected charge carriers and, therefore, to the energy of the incident photon. By the integration of a storage into each pixel, the accuracy of the energy measurement can be improved, especially for high frame rates in the order of the readout time of one pixel. One implementation of such a concept is the so-called Infinipix.2 It is composed of two sub-pixels that share their source node in the center. The functional principle was already demonstrated on single pixel3 and matrix scale4 but enhancements are still necessary to improve the robustness of the devices. In this paper we present variations in the processing technology and the layout that enhance the reliability of the DEPFETs with integrated storage. Adaptions in the technology help to increase the operation voltages for the charge suppression at the insensitive sub-pixel which is demonstrated with measurements. A layout variation combines the advantages of existing layout variants. It was tested with 3D TCAD† simulations and is in fabrication to be available for measurements.
The alert did not successfully save. Please try again later.
J. Müller-Seidlitz, Alexander Bähr, N. Meidinger, W. Treberspurg, "Recent improvements on high-speed DEPFET detectors for x-ray astronomy," Proc. SPIE 10709, High Energy, Optical, and Infrared Detectors for Astronomy VIII, 107090F (10 July 2018); https://doi.org/10.1117/12.2313203