You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
6 July 2018Deep learning in computer-aided diagnosis incorporating mammographic characteristics of both tumor and parenchyma stroma
We investigated the additive role of breast parenchyma stroma in the computer-aided diagnosis (CADx) of tumors on full-field digital mammograms (FFDM) by combining images of the tumor and contralateral normal parenchyma information via deep learning. The study included 182 breast lesions in which 106 were malignant and 76 were benign. All FFDM images were acquired using a GE 2000D Senographe system and retrospectively collected under an Institution Review Board (IRB) approved, Health Insurance Portability and Accountability Act (HIPAA) compliant protocol. Convolutional neutral networks (CNNs) with transfer learning were used to extract image-based characteristics of lesions and of parenchymal patterns (on the contralateral breast) directly from the FFDM images. Classification performance was evaluated and compared between analysis of only tumors and that of combined tumor and parenchymal patterns in the task of distinguishing between malignant and benign cases with the area under the Receiver Operating Characteristic (ROC) curve (AUC) used as the figure of merit. Using only lesion image data, the transfer learning method yielded an AUC value of 0.871 (SE=0.025) and using combined information from both lesion and parenchyma analyses, an AUC value of 0.911 (SE=0.021) was observed. This improvement was statistically significant (p-value=0.0362). Thus, we conclude that using CNNs with transfer learning to combine extracted image information of both tumor and parenchyma may improve breast cancer diagnosis.
The alert did not successfully save. Please try again later.
Hui Li, Deepa Sheth, Kayla R. Mendel, Li Lan, Maryellen L. Giger, "Deep learning in computer-aided diagnosis incorporating mammographic characteristics of both tumor and parenchyma stroma," Proc. SPIE 10718, 14th International Workshop on Breast Imaging (IWBI 2018), 1071806 (6 July 2018); https://doi.org/10.1117/12.2318282