You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
17 September 2018Non-reciprocal lasing action in topological cavities of arbitrary geometries (Conference Presentation)
Topological insulator is a material in which helical conducting states exist on the surface of the bulk insulator. These states can transport electrons or photons at the boundary without any back scattering, even in presence of obstacles enabling to make topological cavities with arbitrary geometries that light can propagate in one direction. Here, we present the demonstration of the first experimental non-reciprocal topological laser that operates at telecommunication wavelengths. The unidirectional stimulated emission from edge states is coupled to a selected waveguide output port with an isolation ratio of 11 dB. Topological cavities are made of hybrid photonic crystals (i.e., two different photonic crystals) with distinct topological phase invariants, which are bonded on a magnetic material of yttrium iron garnet to break the time-reversal symmetry. Our experimental demonstration, paves the way to develop complex nonreciprocal topological devices of arbitrary geometries for integrated and robust generation and transport of light in classical and quantum regimes.