Translator Disclaimer
18 September 2018 Towards a 2D printer: a deterministic cross contamination-free transfer method for atomically layered materials (Conference Presentation)
Author Affiliations +
Precision and chip contamination-free placement of two-dimensional (2D) materials is expected to accelerate both the study of fundamental properties and novel device functionality. Current transfer methods of 2D materials onto an arbitrary substrate deploy wet chemistry and viscoelastic stamping. However, these methods produce a) significant cross contamination of the substrate due to the lack of spatial selectivity b) may not be compatible with chemically sensitive device structures, and c) are challenged with respect to spatial alignment. Here, we demonstrate a novel method of transferring 2D materials resembling the functionality known from printing; utilizing a combination of a sharp micro-stamper and viscoelastic polymer, we show precise placement of individual 2D materials resulting in vanishing cross contamination to the substrate. Our 2D printer-method results in an aerial cross contamination improvement of two to three orders of magnitude relative to state-of-the-art dry and direct transfer methods. Moreover, we find that the 2D material quality is preserved in this transfer method. Testing this 2D material printer on taped-out integrated Silicon photonic chips, we find that the micro-stamper stamping transfer does not physically harm the underneath Silicon nanophotonic structures such as waveguides or micro-ring resonators receiving the 2D material. Such accurate and substrate-benign transfer method for 2D materials could be industrialized for rapid device prototyping due to its high time-reduction, accuracy, and contamination-free process.
Conference Presentation
© (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Rohit Hemnani, Rishi Maiti, Caitlin Carfano, Mohammad H. Tahersima, and Volker J. Sorger "Towards a 2D printer: a deterministic cross contamination-free transfer method for atomically layered materials (Conference Presentation)", Proc. SPIE 10730, Nanoengineering: Fabrication, Properties, Optics, and Devices XV, 1073015 (18 September 2018);

Back to Top