You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
17 September 2018Integration of optomechanical system models with DIRSIG
Stray light, any unwanted radiation that reaches a focal plane, presents a significant challenge for both airborne and satellite remote sensing systems by reducing image contrast, creating false signals or obscuring faint ones, and ultimately degrading radiometric accuracy. These detrimental effects can have a profound impact on the usability of collected data, which must be radiometrically calibrated to be useful for scientific applications. Understanding the full impact of stray light on data scientific utility is of particular concern for lower cost, more compact satellite systems which inherently provide fewer opportunities for stray light control. To address these concerns, we present a general methodology for integrating an optomechanical system model with the Digital Imaging and Remote Sensing Image Generation (DIRSIG) model. The results reported in this paper describe the collection of necessary raytrace data from an optomechanical system model (in this case, using FRED Optical Engineering Software), and also include the initial demonstration of the integration method by imaging DIRSIG test scenes. By integrating a high-fidelity optomechanical system model with a physics-driven, synthetic image generation model like DIRSIG, we are now able to explore system trade studies and conduct sensitivity analyses on parameters of interest, including those that influence stray light, by analyzing their effects on realistic test scenes. This new capability further aids in demonstrating the quantitative linkage between system trade studies and impact to scientific users, which will enhance the writing of system requirements.
The alert did not successfully save. Please try again later.
Keegan S. McCoy, John P. Kerekes, Scott D. Brown, Adam A. Goodenough, Rolando V. Raqueño, Jared D. Van Cor, Ryan G. Irvin, "Integration of optomechanical system models with DIRSIG," Proc. SPIE 10743, Optical Modeling and Performance Predictions X, 1074304 (17 September 2018); https://doi.org/10.1117/12.2320641