You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
22 October 2018Phenotyping studies of wheat by multispectral image analysis
To meet an increasing demand for food production there is a need for faster genetic gains in Norwegian cereal breeding. Yield gains can be improved by use of High-Throughput Phenotyping (HTP) based on multispectral imaging and application of genomic selection. Several spectral indices have been tested to estimate grain yield, such as the Normalized Differential Vegetation Index (NDVI) and MERIS Terrestrial Chlorophyll Index (MTCI). For the present work, data was gathered from a field trial with 96 plots of 24 wheat cultivars laid out in an alpha-lattice split plot design. The design had two levels of nitrogen (N) fertilization, 75 and 150 kg N/ha, applied at sowing. Also, a larger field trial with 301 breeding lines with two reps of high N fertilization was used. Multispectral images where taken in the wavebands green (550 nm), red (660 nm), red edge (735 nm) and near infrared (NIR) (790 nm) with a Parrot Sequoia multispectral camera combined with a sunshine sensor. This allows vegetation indices to be calculated. In addition, 3D models and Digital Surface Models (DSM) are used to estimate plant height. All cameras and sensors were mounted on a light Unmanned Aerial Vehicle (UAV). Images were taken at regular intervals throughout the growth season. The time series of the vegetation indices showed high values during the period of grain filling for wheat plots that received higher dose of fertilization. The values reached their peak around the period of grain filling before declining when plants approached maturity. For site B, the historical cultivars showed significant differences in NDVI and MTCI, but the indices were weakly correlated with grain yield. On site B, however, the large field with breeding lines, both vegetation indices were associated with grain yield with MTCI showing the strongest correlation coefficient of 0.49. The plant heights computed from the DSM showed deviations of 0.1 to 0.2 meters from the manual measurements, indicating that more sophisticated models are needed for reliable prediction of plant height.
The alert did not successfully save. Please try again later.
Ole K. Grindbakken, Bless Kufoalor, Aleksander Hykkerud, Morten Lillemo, Ingunn Burud, "Phenotyping studies of wheat by multispectral image analysis," Proc. SPIE 10783, Remote Sensing for Agriculture, Ecosystems, and Hydrology XX, 107830I (22 October 2018); https://doi.org/10.1117/12.2325692